iOS Forensics: Overcoming iPhone Data Protection

Andrey Belenko
Chief Security Researcher
Elcomsoft Co. Ltd.
Agenda

- iOS Forensics 101
- iOS 4 Data Protection
- iOS Forensics
 - Passcode
 - Keychain
- Storage
Forensics 101

Acquisition ➔ Analysis ➔ Reporting

GOALS:

1. Assuming physical access to the device extract as much information as practical

2. Leave as little traces/artifacts as practical
iOS Forensics 101

- Passcode
 - Prevents unauthorized access to the device
 - Bypassing passcode is usually enough

- Keychain
 - System-wide storage for sensitive data
 - Encrypted

- Storage encryption
 - iPhone 3Gs and later can encrypt disk data
iOS Forensics 101

• iOS is modified version of Mac OS X
 • Familiar environment

• iOS enforces additional security
 • Code signing: can’t run unsigned executables
 • Sandboxing: access to system is limited

• Acquisition options:
 • Via exposed interfaces (i.e. Sync, Backup)
 • Via circumventing security and running own code
iOS Forensics 101

- **Logical: iOS Backup**
 - Ask device to produce a backup
 - Device must be unlocked
 - Device may produce encrypted backup
 - Limited amount of information

- **Physical: filesystem acquisition**
 - Boot-time exploit to run unsigned code
 - Device lock state isn’t relevant
 - Can get all information from the device
 - Since iOS 4 filesystem is encrypted
Pre-iOS 4 Forensics

- Device passcode can be bypassed
- Storage is effectively not encrypted
 - Device transparently decrypts data
- Keychain data is encrypted
 - One can either decrypt all or nothing. Usually all.

Once you have code execution, rest is easy
New in iOS 4

- Passcode protection is much more robust
- Storage is encrypted
 - Metadata is not encrypted
 - Contents of (almost) every file is encrypted
- New (and better) Keychain encryption
- New (and better) iTunes backup format

All these are part of iOS 4 Data Protection
AES Keys

- All iOS devices have built-in AES processor with 2 hardcoded keys:
 - GID Key is shared by all devices of the same kind
 - UID Key is unique to each and every device (hardware key)

- More keys are computed during startup:
 - Key $0x835 = AES_encrypt \ (UID, \ 0101..01)$ (device key)
 - Derived keys depend solely on GID or UID and thus are fixed for the particular device
Protection Classes

- Content is grouped into protection classes:
 - Available only when device is unlocked
 - Available after first device unlock (and until off)
 - Always available

- Each protection class assigned a master encryption key
- Master keys are protected by device key and passcode
- Protected master keys form system keybag
- New keys created during device restore
System Keybag

- Stores protected (encrypted) master keys
- Keybag payload is encrypted before writing to disk
- Stored in /private/var/keybags/systembag.kb
- File has NSProtectionNone protection class
 - Meaning it is encrypted
- 11 protection classes in total
 - All but NSProtectionNone are stored in systembag.kb
 - NSProtectionNone is stored in Effaceable Storage
Effaceable Storage

- Region of flash memory
- Facilitates storage of small amounts of data with ability to quickly erase them
- Items within effaceable storage are called lockers
- As of iOS 4: 960 bytes capacity, 3 lockers:
 - ‘BAG1’ – systembag.kb payload key and IV
 - ‘Dkey’ – NSProtectionNone class master key
 - ‘EMF!’ – Filesystem encryption key
Unlocking Keybag

Keybag (locked)

Passcode Key

if (WRAP & 0x2)

Device Key

if (WRAP & 0x1)

UNWRAP

UNWRAP

UNWRAP

UNWRAP

... protected keys

DECRYPT

DECRYPT

DECRYPT

DECRYPT

... keys

Keybag (unlocked)
Escrow Keybag

- “Usability feature”
 - Allows iTunes to unlock the device

- Contains same master keys as system keybag

- Created when device (unlocked) is connected to the iTunes for the first time

- Stored on the computer side

- Protected by 256 bit random “passcode”
 - “Passcode” is stored on the device

- Escrow keybag gives same powers as knowing the passcode
iOS 4 Key Hierarchy

Must be done on the device

- EMF Key
- Key 89B
- Key 835
- Passcode Key
- KDF
- Unlock
- System Keybag (unlocked)

Effaceable Storage

- 'EMF'
- 'Dkey'
- 'BAG1'

Decryption

- systembag.kb
- Decrypt

System Keybag (locked)

<table>
<thead>
<tr>
<th>Class</th>
<th>Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A Key (#1)</td>
</tr>
<tr>
<td>B</td>
<td>B Key (#2)</td>
</tr>
<tr>
<td>C</td>
<td>C Key (#3)</td>
</tr>
<tr>
<td>D</td>
<td>D Key (#4)</td>
</tr>
<tr>
<td></td>
<td>Class Key #5</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>Class Key #11</td>
</tr>
</tbody>
</table>
iOS 4 Key Hierarchy

Passcode

- **Passcode Key**
 - **KDF**
 - **UID Key**
 - **Decrypt**
 - **Key 835**
 - **Key 89B**
 - **Decrypt**
 - **EMF Key**
 - **Unlock**
 - **System Keybag (locked)**
 - **Class A Key (#1)**
 - **Class B Key (#2)**
 - **Class C Key (#3)**
 - **Class D Key (#4)**
 - **Class Key #5**
 - **Class Key #11**
 - **System Keybag (unlocked)**

Must be done on the device
- **Decrypt**
- **EMF Key**

Required to decrypt files/keychain
- **Decrypt**
- **'EMF!'**
- **'Dkey'**
- **'BAG1'**
- **systembag.kb**

iOS 4 Key Hierarchy

- **UID Key**
- **Key 835**
- **Key 89B**
- **Passcode**
- **Passcode Key**
- **KDF**

Effaceable Storage
- ‘EMF!’
- ‘Dkey’
- ‘BAG1’

System Keybag (locked)
- **Class A Key (#1)**
- **Class B Key (#2)**
- **Class C Key (#3)**
- **Class D Key (#4)**
- **Class Key #5**
- **…**
- **Class Key #11**

System Keybag (unlocked)

- **Systembag.kb**
- **Decrypt**
- **Unlock**
iOS 4 Key Hierarchy

- **Must be done on the device**
- **Required to decrypt files/keychain**
- **Sufficient for key reconstruction**

EMF Key

Decrypted by:
- **Key 89B**
- **Key 835**

UID Key

- **KDF**
- **Passcode Key**

Passcode

- **Unlock**

Effaceable Storage

- ‘EMF’
- ‘Dkey’
- ‘BAG1’

- **systembag.kb**

System Keybag (locked)

- **Class A Key (#1)**
- **Class B Key (#2)**
- **Class C Key (#3)**
- **Class D Key (#4)**
- **Class Key #5**
- **…**
- **Class Key #11**

System Keybag (unlocked)
iOS 4 Key Hierarchy

- **Passcode**
 - **Passcode Key**
 - **KDF**
 - **UID Key**
 - **Decrypt**
 - **Key 835**
 - **Decrypt**
 - **Key 89B**
 - **Decrypt**
 - **EMF Key**
 - **Unlock**
 - **System Keybag (unlocked)**
 - **Decrypt**
 - **systembag.kb**
 - **Decrypt**
 - **'EMF'**
 - **Unlock**
 - **System Keybag (locked)**
 - **Unlock**
 - **Class Key #5**
 - **Class Key #11**
 - **Class D Key (#4)**
 - **Class C Key (#3)**
 - **Class B Key (#2)**
 - **Class A Key (#1)**
 - **Class Key #5**
 - **Class Key #11**

 - **Decrypt**
 - **Key 835**
 - **Decrypt**
 - **Key 89B**
 - **Decrypt**
 - **EMF Key**
 - **Unlock**
 - **System Keybag (unlocked)**

- **Must be done on the device**
- **Required to decrypt files/keychain**
- **Sufficient for key reconstruction**
iOS 4 Key Hierarchy

- **Must be done on the device**
- **Required to decrypt files/keychain**
- **Sufficient for key reconstruction**

Passcode

1. **Passcode Key**
 - **Unlock**
 - **System Keybag**
 - **Unlock**
 - **System Keybag (unlocked)**
 - **Must be done on the device**
 - **Must be done on the device**
 - **Required to decrypt files/keychain**
 - **Sufficient for key reconstruction**

2. **KDF**
 - **UID Key**
 - **Decrypt**
 - **Key 835**
 - **Key 89B**
 - **EMF Key**

3. **Decrypt**
 - **EMF Key**
 - **‘EMF!’**
 - **‘Dkey’**
 - **‘BAG1’**

4. **System Keybag (locked)**
 - **Class A Key (#1)**
 - **Class B Key (#2)**
 - **Class C Key (#3)**
 - **Class D Key (#4)**
 - **Class Key #5**
 - **...**
 - **Class Key #11**

5. **Decrypt**
 - **systembag.kb**

21
Pre-iOS 4 Passcode

• Lockscreen (i.e. UI) is the only protection

• Passcode is stored in the keychain
 • Passcode itself, not its hash

• Can be recovered or removed instantly
 • Remove record from the keychain
 • And/or remove setting telling UI to ask for the passcode
iOS 4 Passcode

• Passcode is used to compute passcode key
 • Computation tied to hardware key
 • Same passcode will yield different passcode keys on different devices!

• Passcode key required to unlock all but 3 master keys in system keybag

• Most files are NSProtectionNone thus don’t need passcode
• Most keychain items are accessible WhenUnlocked or AfterFirstUnlock thus DO require passcode
iOS 4 Passcode

- Passcode-to-Key transformation is slow
- Offline brute-force currently not possible
 - Requires extracting hardware key
- On-device brute-force is slow
 - 2 p/s on iPhone 3G, 7 p/s on iPad
- System keybag contains hint on password complexity
iOS 4 Passcode

- 0 – digits only, length = 4 (simple passcode)
iOS 4 Passcode

- 0 – digits only, length = 4 (simple passcode)
- 1 – digits only, length != 4
iOS 4 Passcode

- 0 – digits only, length = 4 (simple passcode)
- 1 – digits only, length != 4
- 2 – contains non-digits, any length
iOS 4 Passcode

- 0 – digits only, length = 4 (simple passcode)
- 1 – digits only, length != 4
- 2 – contains non-digits, any length

Can at least identify weak passcodes
Demo
Pre-iOS 4 Keychain

- SQLite3 Database, only passwords are encrypted
- All items are encrypted with the device key (0x835) and random IV
- Key is unique for each device and is fixed for lifetime of the device
- Key can be extracted (computed) for offline use
- All past and future keychain items from the device can be decrypted using that key
iOS 4 Keychain

- SQLite3 Database, only passwords are encrypted
- Available protection classes:
 - kSecAttrAccessibleWhenUnlocked (+ ...ThisDeviceOnly)
 - kSecAttrAccessibleAfterFirstUnlock (+ ...ThisDeviceOnly)
 - kSecAttrAccessibleAlways (+ ...ThisDeviceOnly)
- Random key for each item
- Item key is protected with corresponding protection class master key

<table>
<thead>
<tr>
<th>Class</th>
<th>Wrapped Item Key</th>
<th>Encrypted Item</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>0</td>
<td>48</td>
<td>48</td>
</tr>
</tbody>
</table>
Pre-iOS 4 Storage

- No encryption before iPhone 3GS
- Starting with iPhone 3GS:
 - Encryption uses EMF key for everything
 - Provides fast wipe, not confidentiality
 - Transparent to applications
 - Filesystem acquisition is not affected
iOS 4 Storage

• Available protection classes:
 • NSProtectionNone
 • NSProtectionComplete

• If no protection class is specified, EMF key is used
 • Filesystem metadata and unprotected files
 • Transparent encryption and decryption (same as pre-iOS 4)

• If protection class is specified, per-file random key is used
 • Key protected with master key is stored
 com.apple.system.cprotect extended attribute
• Acquired raw image has everything decrypted with EMF key
 • Filesystem metadata is OK
 • File contents are not

• Restoring file data requires reverse transformations:
 • Encrypt with EMF key to get correct ciphertext
 • Decrypt with file key to get plaintext
iOS 4 Forensics

- Must be done on the device
- Required to decrypt files/keychain
- Sufficient for offline key reconstruction

Key 835 → UID Key

Passcode Key

Unlock

System Keybag (locked)

Class A Key (#1)
Class B Key (#2)
Class C Key (#3)
Class D Key (#4)
Class Key #5
...
Class Key #11

Unlock

System Keybag (unlocked)

Passcode

KDF

Decrypt

EMF Key

‘EMF!’
‘Dkey’
‘BAG1’

systembag.kb

Decrypt

Key 89B

Key 835

Decrypt

EMF Key

‘EMF!’
‘Dkey’
‘BAG1’
iOS 4 Forensics

• Acquiring disk image is not enough for iOS 4+
 • Content protection keys must also be extracted from the device during acquisition
 • Effaceable Storage contents are also needed to decrypt dd images.

• Passcode or escrow keybag is needed for a complete set of master keys

• In real world it might be a good idea to extract source data and compute protection keys offline
Conclusion

- iPhone physical analysis is possible again
- Physical acquisition requires boot-time exploit
- Passcode is *usually* not a problem
- Both proprietary and open-source tools for iOS 4 forensics available
Questions?
iOS Forensics: Overcoming iPhone Data Protection

a.belenko@elcomsoft.com
@andreybelenko
www.elcomsoft.com