
Abusing Locality in Shared Web Hosting

Nick Nikiforakis

Nick Nikiforakis – Brucon – 19th September

2011

About me

• PhD student at KUL

• Applied security research

– Low-level countermeasures for unsafe

languages

– Web application security

• Published in academic/industry and

hacking conferences

• http://www.securitee.org

In one sentence…

• Two novel server-side session attacks

against Web applications hosted in a

shared-hosting environment, which target

a Web application‟s logic instead of

authenticated users

– Bypass authentication mechanisms

– Elevate privileges

– Conduct, previously impossible, attacks

Roadmap

• Shared Hosting

• Session Identifiers

• Session Attacks

– Standard (client-side)

– Session Snooping, Session Poisoning (server-side)

• Who is affected

• Existing Protection mechanisms

• Conclusion

Shared Hosting

• 124,953,126 active domains[1]

– 121,121 registered today

• Hosting companies

– Shared Hosting

– Virtual Dedicated Hosting

– Dedicated Hosting

[1] http://www.domaintools.com/internet-statistics/

Shared Hosting Prices

• Shared Hosting

– Starting at 3.64 Euro/month

• Virtual Dedicated Hosting

– Starting at 21.89 Euro/month

• Dedicated Hosting

– Starting at 45.97 Euro/month

6X

Shared Hosting

• Many users share one server

• Typically:

– 1 Virtual Host Setting/User

– User is confined to a small number of

directories

– All web applications run with the privileges of

the Web Server

Downsides of Shared Hosting

• More Limits

• Less Control

• Less Performance

• LESS SECURITY!

Sessions

HTTP & HTTPS

• The two workhorse protocols are by

design stateless

– No native-tracking mechanism provided

– Inability to enforce access control

• Mechanisms

– HTTP Authentication

– Client-side SSL certificates

– Session identifiers

Session Identifiers

• Generate pseudo-random identifier
(token) and bind that with a specific user

• Give this token to the user

• Every time that the user visits the page,
make the distinction based on that token

• Indispensable feature of the modern
WWW

– All Web-programming languages support it

Session Cookie

• Ways to communicate the session identifier

to the user:

– As a cookie

• PHPSESSID=qwertyuiop;

– As a GET parameter

• http://www.mysite.com/index.php?ID=qwertyuiop

Well-known session attacks

• Session Hijacking

– Through XSS

• XSSed contains more than 300,000 records

– Sniffed Traffic

• Open WiFi, TOR Exit nodes

• Most recent-tool, FireSheep

• Session Fixation

– Get a valid session

– Let the user populate it

– Then use it again

Sessions and the Server

Behind the scenes

• session_start(), creates a file that will contain all
the values that the programmer will set in the
$_SESSION[] array

• The filename consists of a standard prefix and
the session_id itself

– Set-Cookie: PHPSESSID= qwertyuiop

– Filename: sess_qwertyuiop

– Stored in the default session store

• /tmp, /var/lib/php5,…

What does the session file look like

• $_SESSION[„loggedin‟] = 1;

• $_SESSION[„user‟] =

“admin”;

• $_SESSION[„num‟] = 4.5;

• loggedin|i:1;

• user|s:5:“admin”

• num|d:4.5

Behind the scenes

GET /index.php

Cookie:

PHPSESSID=12345678

….

 Open file:

$Session_store/$Prefix_
12345678

 Populate $_SESSION[]
array with values from
this file

User With Session

Facts…

• By default, all PHP scripts share a common

session store

• The session file accessed by PHP is based

on the session id provided by the user

• A Web application can‟t distinguish

between sessions that it created and

sessions that other applications created

Results…

An attacker with a single malicious PHP

script can:

1. force a co-located web application to

use sessions that it didn‟t create

2. Open session files that he didn‟t create

and make arbitrary changes

Results…

An attacker with a single malicious PHP

script can:

1. force a co-located web application to

use sessions that it didn‟t create

2. Open session files that he didn‟t create

and make arbitrary changes

Session Snooping

Session Poisoning

if (isset(

$_SESSION[„isadmin‟])

){

 //Administrative panel

[…]

}

$_SESSION[„isadmin‟] = True;

Session Poisoning…

1. An attacker creates a new session

2. Populates this session with common

variable names

– $_SESSION[„loggedin‟] = 1

– $_SESSION[„isadmin‟] = 1

– $_SESSION[„user‟] = “admin”

– $_SESSION[„userid‟] = 0

– …

Session Poisoning…

3. Forces the session cookie to all of the

websites/web applications located on the

same server

4. If an application uses the same naming of

variables then the attacker can circumvent

the logic of the application

– E.g, if (isset($_SESSION[„isadmin‟]))

Session Snooping

1. The attacker visits a co-located website,

creates an account and does an

“exhaustive” browsing of the website

2. He prints out his session identifier

3. He instructs his own scripts to load the

session file with the session identifier of

the website in question

i. Legitimate operation of session_id()

Session snooping…

4. He looks at the values that the website

has set in the session identifier

5. He edits/adds values which will enable

him to elevate his rights

– $_SESSION[„userid‟] = 45;

Session snooping…

4. He looks at the values that the website

has set in the session identifier

5. He edits/adds values which will enable

him to change/elevate his rights

– $_SESSION[„userid‟] = 45;

– $_SESSION[„userid‟] = 44;

Attacker Methodology

• Mass Attacks

– Obtain list of websites located on the same

physical server as you

– Create a session and set many common

keywords

– Browse all the different websites, always

forcing the session cookie that you created

Attacker Methodology

• Specific targets

– Place yourself on the same server as your

victim

– Browse their website extensively and then

load their session in your PHP snooping script

– Change values at will

– Reload page

DEMO!

• Hopefully…

Attacks made possible

• Expanding the attack surface

– Programmers trust their own input

– SQL, XSS, Local/Remote file inclusion…

SELECT fname,lname,email from users where

userid = $_SESSION[„userid‟];

$_SESSION[„userid‟] = „-1 UNION ALL

SELECT…‟;

Attacks made possible

• Evading Web application firewalls

– Session values that are used in SQL requests

are never in the URL or body of the request

• Evade logging

– Attack vector is not present in the attacker‟s

request, thus it will never show in any kind of

logging

Roadmap

• Shared Hosting

• Session Identifiers

• Session Attacks

– Standard (client-side)

– Session Snooping, Session Poisoning (server-side)

• Who is affected

• Existing Protection mechanisms

• Conclusion

Who is affected?

• Everyone hosted on a shared hosting

environment who is not actively protecting

their sessions

– Open source applications

• forum-software, picture galleries, web admin

panels, CMS …

– Custom scripts

Teaching Programmers…

Chapter 8:

“Sessions work great

with no additional

tweaking….”

Common session stores

• How popular is the use of common session

stores?

• Crawl phpinfo pages on 500 websites

• 89.71% kept the default values

– /tmp

– /var/lib/php4

– C:\PHP\sessiondata

Case Study: CMS

• Content Management Systems

• Enable non-programmers to create

professional, dynamic and powerful

websites

CMS: Results

• 9 out 10 used sessions to maintain state

• 2 out of 9 used the default PHP session

functionality…

– Concrete5 & WolfCMS

– 22.2% Vulnerable

• The non-vulnerable ones used the

database to store their sessions

Roadmap

• Shared Hosting

• Session Identifiers

• Session Attacks

– Standard (client-side)

– Session Snooping, Session Poisoning (server-side)

• Who is affected

• Existing Protection mechanisms

• Conclusion

Suhosin

• Suhosin is an advanced protection system

for PHP installations. It was designed to

protect servers and users from known and

unknown flaws in PHP applications and the

PHP core.

– Patch to protect core

– Extension to protect applications

http://www.hardened-php.net/suhosin/index.html

Suhosin Session Defaults

Session data can be encrypted transparently.

The encryption key used consists of this user defined string

(which can be altered by a script via ini_set()) and optionally

the User-Agent, the Document-Root and 0-4 Octects of the

REMOTE_ADDR.

Other server solutions

• suEXEC, suPHP, fastcgi…

• One common goal

– Run applications with specific user privileges

instead of “nobody” web user

– We can no longer open other peoples‟ session

files and snoop around (Session Snooping)

– 16-35x overhead

– But?

Can we go around these?

• If the session store is still common, yes 

– Create and poison session

– Change permissions of session file to 0777

– Force site to use the specific session id

• This will work because your file is available to all

other users

Roadmap

• Shared Hosting

• Session Identifiers

• Session Attacks

– Standard (client-side)

– Session Snooping, Session Poisoning (server-side)

• Who is affected

• Existing Protection mechanisms

• Conclusion

Take away…

• In an shared hosting environment where:

– Each Web application runs as a different

user

• Isolation enforced by the OS

– A Web shell won‟t help you touch other Web

applications

– Abusing the common session storage to

perform Session Poisoning and Session

Snooping, will

Conclusion

• Session management functionality of PHP

was NOT designed with shared hosting in

mind…

• Two novel server-side attacks against

session identifiers

– Bypass authentication

– Impersonate users

– Perform, previously impossible, attacks

Thank you

• Questions?

Contact:

nick.nikiforakis [AT] cs.kuleuven.be

http://www.securitee.org

http://demo1.cz.cc

http://sessionattacker.cz.cc

