Uncovering SAP vulnerabilities: Reversing and breaking the Diag protocol

Martin Gallo – Core Security
BruCon – September 2012
Agenda

• Introduction
• Motivation and related work
• SAP Netweaver architecture and protocols layout
• Dissecting and understanding the Diag protocol
• Results and findings
• Defenses and countermeasures
• Conclusion and future work
Introduction
Introduction

• Leader business software provider
• Sensitive enterprise business processes runs on SAP systems

• SAP security became a hot topic
• Some components still not well covered
• Proprietary protocols used at different components
Introduction

- Dynamic Information and Action Gateway (Diag) protocol (aka “SAP GUI protocol”)
- Link between presentation layer (SAP GUI) and application layer (SAP Netweaver)
- Present in every SAP NW ABAP AS
- Compressed but unencrypted by default
- Optional encryption using an additional component (SNC)
- TCP ports 3200 to 3299
Motivation and related work
Previous work on Diag protocol

- Proprietary tools
- Sniffing through reflection method
- Compression algorithm disclosed
- Proxy-like tool
- Decompression Wireshark plug-in
- Cain&Abel sniffing

<2009
2009
2010
2011
Motivation

- Previous work mostly focused on decompression
- Protocol inner workings remains unknown
- No practical tool for penetration testing
- Relevant protocol in every NW installation

Only 2 out of ~2400 security fixes published by SAP since 2009 affected components related to Diag
SAP Netweaver architecture and protocols layout
SAP Netweaver architecture

Relevant concepts and components

- **ABAP**
 - SAP’s programming language

- **Dispatcher and work processes (wp)**
 - **Dispatcher**: distribute user requests across wp
 - **Work processes**: handles specific tasks
 - Types: dialog, spool, update, background, lock

- **Dialog processing**
 - Programming method used by ABAP
 - Separates business programs in **screens** and **dialog steps**
SAP Protocols layout

Proprietary protocols

NI (Network Interface) Protocol

Standard protocols

RFC
Diag Protocol
Router
BAPI
SOAP
HTTP
SSL
Dissecting and understanding the Diag protocol
Dissecting and understanding the Diag protocol

Approach

- ‘Black-box’
- Not reverse engineering of binaries
- Enable system/developer traces (GUI/app server)
- Analyze network and application traces
- Learn by interacting with the components (GUI/app server)
- Continuous improvement of test tools based on gained knowledge
Dissecting and understanding the Diag protocol

NI (Network Interface) Protocol

Diag Protocol

DP Header (optional)

Diag Header

Compression Header (optional)

Payload

Diag Item 1

...

Diag Item n
Dissecting and understanding the Diag protocol

Initialization

- Identified only two relevant protocol states:
 - Not initialized
 - Initialized
 - User’s context assigned in shared memory
- Started by GUI application
- Only first packet
- Always uncompressed
Dissecting and understanding the Diag protocol

DP Header

- 200 bytes length
- Two different semantics
 - IPC (inter process communication)
 - Used in communications between dispatcher and work processes
 - Synchronization and status
 - Network
 - Most fields filled with default values
 - Relevant fields:
 - Terminal name, Length
- Only present during initialization (first packet)
Dissecting and understanding the Diag protocol

Diag Header

- **Mode**: Identifies different sessions using the same channel
- **Comm Flag**: Compression enabled/disabled, encryption using SNC

![Diagram](image)
Dissecting and understanding the Diag protocol

Compression

• Enabled by default
• Uses two variants of *Lempel-Ziv Adaptive Compression Algorithm*
 • *LZH* (Lempel-Ziv-Huffman) LZ77
 • *LZC* (Lempel-Ziv-Welch-Thomas) LZ78
• Same implementation as SAP’s *MaxDB* open source project
• Can be disabled in GUI by setting *TDW_NOCOMPRESS* environment variable
Dissecting and understanding the Diag protocol

Compression Header

0

Uncompressed length

4

Comp Alg

5

Magic Bytes x1F x9D

7

Special Byte

LZH: 0x12
LZC: 0x10

LZH: compression level
LZC: max # of bits per code
Dissecting and understanding the Diag protocol

Payload

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SES</td>
<td>Fixed length (16 bytes)</td>
</tr>
<tr>
<td>ICO</td>
<td>Fixed length (20 bytes)</td>
</tr>
<tr>
<td>TIT</td>
<td>Fixed length (3 bytes)</td>
</tr>
<tr>
<td>DiagMessage</td>
<td>Fixed length (76 bytes)</td>
</tr>
<tr>
<td>OKC</td>
<td>(? Bytes)</td>
</tr>
<tr>
<td>CHL</td>
<td>Fixed length (22 bytes)</td>
</tr>
<tr>
<td>SBA</td>
<td>Fixed length (9 bytes)</td>
</tr>
<tr>
<td>EOM</td>
<td>Fixed length (0 bytes)</td>
</tr>
<tr>
<td>APPL/APPL4</td>
<td>Variable length</td>
</tr>
<tr>
<td>DIAG_XMLBlob</td>
<td>Variable length</td>
</tr>
<tr>
<td>SBA2</td>
<td>Fixed length (36 bytes)</td>
</tr>
</tbody>
</table>
Dissecting and understanding the Diag protocol

APPL/APPL4 items

APPL: 0x10
APPL4: 0x12

APPL: 2 bytes
APPL4: 4 bytes
Diag protocol security highlights

Protocol version

- APPL item included in payload during initialization
- Can disable compression using version number “200”

Authentication

- Performed as a regular dialog step
- Set user’s context on work processes shared memory

Embedded RFC calls

- APPL item that carries RFC calls in both directions
- Server doesn’t accept RFC calls until authenticated
Results and findings
Packet dissection – SAP plugin for Wireshark

- Wireshark plug-in written in C/C++
 - NI Protocol dissector
 - TCP reassembling
 - Router Protocol dissector
 - Basic support
 - Diag protocol dissector
 - Decompression
 - DP header / Diag Header / Compression Header
 - Item ID/SID identification and dissection of relevant items
 - Call RFC dissector for embedded calls
 - RFC protocol dissector
 - Basic coverage of relevant parts

Packet dissection – SAP plugin for Wireshark
Packet crafting - pysap

- Scapy classes
 - SAPNi
 - SAPDiagDP (DP Header)
 - SAPDiag (Diag header + compression)
 - SAPDiagItem
 - Custom classes for relevant Diag items
 - C++ extension for compression/decompression

- PoC and example scripts
 - Information gathering
 - Login Brute Force
 - Proxy/MITM script
 - Diag server

Packet crafting - pysap
Fuzzing approach

• Fuzzing scheme using
 • scapy classes - pysap
 • test cases generation
 • delivery
 • windbg
 • monitoring
 • xmlrpc
 • synchronization

• Monitoring of all work processes
Vulnerabilities found

• 6 vulnerabilities released on May 2012 affecting SAP NW 7.01/7.02, fix available on SAP Note 168710

• Unauthenticated remote denial of service when developed traces enabled
 • CVE-2012-2511 – DiagTraceAtoms function
 • CVE-2012-2512 – DiagTraceStreamI function
 • CVE-2012-2612 – DiagTraceHex function
Vulnerabilities found

• Unauthenticated remote denial of service
 • CVE-2012-2513 – Diaginput function
 • CVE-2012-2514 – DiagiEventSource function

• Unauthenticated remote code execution when developer traces enabled
 • CVE-2012-2611 – DiagTraceR3Info function
 • Stack-based buffer overflow while parsing ST_R3INFO CODEPAGE item
 • Thanks to Francisco Falcon (@fdfalcon) for the exploit
 • Exploit available since May on CORE Impact, Sept on MSF
Attack scenarios

Target applications servers

- Exploit mentioned CVEs
- Gather server information
- Login brute force

Attacker → Exploit → SAP NW AS
Attack scenarios

Target GUI users

Rogue Server

GUI User

GUI Shortcut

MitM

Gather credentials

Inject RFC calls in user’s GUI

SAP NW AS
Recent changes

• Main changes since first release (Defcon / July-2012)
 • sap plugin for Wireshark
 • Fixes on the SAP Router dissector and support for Admin messages (thanks @nmonkee)
 • Minor fixes and improvements
 • pysap
 • More documentation
 • Minor fixes and improvements

• Still working on
 • sap plugin for Wireshark
 • Remove C++ requirement (thanks @jproliers)
 • Add dissection for more Diag items
 • Improve RFC dissection
 • pysap
 • Rogue server PoC on SAP Gui for Windows/SAP GUI Java
 • More example scripts…
Defenses and countermeasures
Defenses and countermeasures

- Restrict network access to dispatcher service
 - TCP ports 3200-3298
 - Use application layer gateways

- Implement SNC client encryption
 - Provides authentication and encryption
 - Available for free at SAP Marketplace since 2011
 - See SAP Note 1643878

- Restrict use of GUI shortcuts
 - SAP GUI > 7.20 disabled by default
 - See SAP Note 1397000
Defenses and countermeasures

- Use WebGUI with HTTPS
 - See SAP Note 314568

- Patch regularly
 - Patch Tuesday
 - RSECNOTE program, see SAP Note 888889

- Patch CVEs affecting Diag
 - Look at CORE’s advisory for mitigation/countermeasures
 - See SAP Note 168710

- Test regularly
Conclusion and future work
Conclusion

• Protocol details now available to the security community
• Practical tools for dissection and crafting of protocol’s messages published
• New vectors for testing and assessing SAP environments
• Discussed countermeasures and defenses
Future work

• Security assessment and fuzzing of GUI/app server
• Complete dissection of embedded RFC calls
• Full implementation of attack scenarios
• Integration with external libraries and exploitation tools
• Security assessment of SNC and coverage of encrypted traffic
Thank you!

mgallo@coresecurity.com

Thanks to
Diego, Flavio, Dana, Wata and Euge
References

https://service.sap.com/sap/support/notes/1643879
http://www.secaron.de/Content/presse/fachartikel/sniffing_diag.pdf
http://conus.info/RE-articles/sapgui.html
http://www.sensepost.com/labs/conferences/2011/systems_application_proxy_pwnage
http://www.oxid.it/index.html
https://service.sap.com/securitynotes
http://www.wireshark.org/
http://www.secdev.org/projects/scapy/
http://www.coresecurity.com/content/sap-netweaver-dispatcher-multiple-vulnerabilities
https://service.sap.com/sap/support/notes/1687910
https://community.rapid7.com/community/metasploit/blog/2012/09/06/cve-2012-2611-the-walk-to-the-shell
http://help.sap.com/saphelp_nw70ehp2/helpdata/en/47/cc212b3fa5296fe10000000a42189b/frameset.htm
https://service.sap.com/sap/support/notes/1643878
https://service.sap.com/sap/support/notes/1397000
https://service.sap.com/sap/support/notes/314568
https://service.sap.com/sap/support/notes/888889