

Kudo Daido Juku allows the fighter to adapt to each new situation using the Budo spirit as their guide

Belgian Style Hacking

This tutorial/workshop was developed by, Sandro Melo -Bandtec College (sandro.melo@bandtec.com.br) -4NIX (sandro@4nix.com.br), with the goal to be a reference in the studies of the Computer Forensic Course, using many FLOSS tools (Free/Livre and Open Source Software).

About me

ND HACKER CONFERENCE

LENG

About Sandro Melo - aka CARIOCA - Currently I work at Bandtec College, and also with Advanced Training. Pentest, Response to Security Incidents and Computer Forensic and student/candidate in Doctor Program in TDD/PUCS-I was born in the beautiful city Rio de Janeiro, Brazil. I moved to Sao Paulo where I began my professional career in System Security. Since 1996 I have worked mainly with Linux/ FreeBSD and FLOSS (Free/libre and Open Source Software), Network Administrator, I am often a guest professor at many universities all over Brazil. Project Fedora Linux Ambassador, LPI and BSDA PROCTOR.

Ambassador, LPI and BSDA PROCTOR. I take great privile in everything I do, especially with my work in Forensics. I have years of hands-on experience with many of the core technologies and have written many books and articles on security and forensics. When not working or writing. I can be found experimenting with the latest Open Source solutions, installing new versions of the same Operation Systems like Unix, such as Low, FreeBSD or Mac OS X and also some FLOSS tools because I find it enjoyable and have a deep passion for my work. "Ik ben zeer blij hier in BruCON / J'ai très heureux ici dans BruCON"

Introduction

In the past, servers configured their risks but these risks were physically dimensioned, corresponding to the limits of the LAN of the corporation or institution. The Internet has radically changed this scenario.

It is more secure than a system with Firewall or other security devices, there will always be the possibility of human error or hitherto unknown failure in the operating system or applications, whether proprietary or FLOSS system. Given this degree of risk, at first intangible, the threat of an invasion is something that we can't overlook.

In this context, forensic techniques are essential during the response to an incident, as to identify where the computer system was compromised, and what information was stolen or changed, also to identity the attacker and preparing the environment for the expertise of Computer Forensics.

Bearing in mind the care of an expert in Computer Forensics, the intrusion system is an electronic crime. Digital evidence must be preserved so that it can be of value.

This workshop was developed by myself,

Forensic Course/,

using many tools of F.L.O.S.S.

with the goal of being referred to in the study of the Computer

FLOSS means (Free/Libre and Open Source Software).

IN BELGIUM HACKING CHALLENGES & W

Image for Post Mortem

Practically the whole Post Mortem begins when the file image is created. The image can be created in specific formats such as:

RAW – created with some command like dd such as dd3cd. Typical format used in systems like Unix for any filesystem (NTFS, FAT, EXT3, UFS)

Librew - Default format of Encase tools and supported for Linux with command libblabla

(Brushing bits, data mining, seeking for Evidence and Artifacts)

Correlations of Forensic Evidence found.

Initial System Analysis

Several actions can be taken in an attempt to find evidence and artifacts related to Security Incidents under investigation.

Knowing the "bad guy's" Modus Operandi helps the Computer Forensic Expert to do his/her job. However, unusual and stealth behavior will always present a challenge.

Initial System Analysis

"Bad guys" who do not have advanced technical knowledge have a Modus Operandi that usually leaves behind evidence of their actions.

Byte Map creation

The creation of an Image String file, as a first step, may allow the identification of relevant information.

strings -a image.img | tee image.img.strings

The strings command has support only ASCII format, that hhy we need to get other different type of strings, use the srch_strings command:

srch_strings -a image.img | tee image.img.strings

Strings vs Regex

The use of REGEX when dealing with string files is an essential mechanism. This way, the use of tools like GREP, EGREP, GLARK are useful to extract clues.

grep -i"tar\.gz\$" image.string

egrep --regexp=``\.tgz|\.zip|\.bz2|\.rar|\.c"
image.string

grep -E "[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9] {1,3}" image.string

Strings vs Regex

grep -i "\/exploit\/" imagem.string
grep -i "\/exploits\/" imagem.string
grep -i "rootkit\/" imagem.string
grep -i "\/\.\.\ " imagem.string

Strings vs Regex grep -i "\/bk\/" image.string grep -i "xpl" image.string grep -i "force" image.string grep "\/\.\.\/" image.string grep "SSH_CLIENT=" image.string

Extracting strings through key words

A practical way to do this is through the generation of a file with key words and usual expressions, aiming to automate the search.

cat image.img.strings | grep -i -f arq.txt

cat image.img.strings | egrep -i -color -f arq.txt

cat image.img.strings | grark -N -i -f arq.txt

Sandro Melo – sandro.melo@bandtec.com.br - Brasil -- 48

	yers – main tools
★★★★ <mark>ř</mark> ile Layer	Tools: jcat, blkcalc, blkcat, blkls, blkstat, find, sorter, sigfind, icat, hfind
**** Metadata Layer	← Tool: ifind, ffind, istat, ils-sleuthkit, fls,
★★★ File System Layer	Tools: fsstat, jls
** Data Layer	Tools: file, testdisk, mmls, mmstat, mmcat, img_cat, img_stat
* Physical Layer	← Tools; fdisk, sfdisk
CONC	EPTS ERUCON RELEASED IN RELEASED 0
Sandro I	felo – sandro.melo@bandtec.com.br - Brasil 50

Look at these main tools that can be used in each layer

	Example	of LSH	N commar	nd use
#lshw				
c4ri0c4	.4nix.com.br			
desc	ription: Desktop Comp	uter		
prod	uct: System Product Na	ame		
vend	or: System manufactur	rer		
	on: System Version			
	I: System Serial Numb	er		
man	1: 32 bits			
	bilities: smbios-2.3 dm			
	guration: boot=normal	chassis=desk	top cpus=2 uuid=	18F67DE5-B7FE-
	9F8-E16BAE8F0FD3			
*-core				
	scription: Motherboard			
	duct: P5PE-VM ndor: ASUSTeK Comp	utor Inc		
	/sical id: 0	Liter Inc.		
	sion: Rev 1 00			
	ial: MB-1234567890			
				SECURITY AND HACKER CONFERENCE
	Data Layer		BRUCON	HACKING CHALLENGES & WORKSHOPS BRUDDLS
	Sandro Melo -	sandro-melof	bandtec.com.br	- Brasil 66

fdisk -lu HD_coleta.				
	priate ioctl for device			
You must set cylind	ers. n the extra functions			
Disk HD coleta.img		menu.		
_	rs/track, 0 cylinders, t	otal 0 sectors		
Units = sectors of 1		0101 0 3001013		
Disk identifier: 0x00				
Disk identilier. oxoc	000000			
Device Boot	Start End B	locks Id Syste	em	
HD_coleta.img1 *		36256+ 83 L		
HD_coleta.img2	72576 2116799	0 1022112	5 Extended	
Partition 2 has diffe	rent physical/logical e	endings:		
phys=(1023, 15,	63) logical=(2099, 15	5, 63)		
HD_coleta.img5	72639 278207	102784+ 8	3 Linux	
HD_coleta.img6	278271 410255			ıp / Solaris
HD_coleta.img7				
HD_coleta.img8	513135 211679	9 801832+ 8	83 Linux	
			· ····································	SECURITY AND HACKER CONFERENCE
Data Lay			PRIJCON	IN BELGIUM

mmis HD co	leta.img Ge	et info f	rom im	age with N	IMLS
DOS Partitio					
Offset Secto	r: 0				
Units are in §	512-byte sect	ors			
Slot	Start	End	Length	Description	
00: Meta (0000000000	000000000	000000001	Primary Table (#0)	
01: 00	00000000 0	00000062 0	00000063	Unallocated	
02: 00:00 0	000000063	0000072575	0000072513	Linux (0x83)	
03: Meta 0	0000072576	0002116799	0002044224	DOS Extended (0x0	95)
04: Meta 0	0000072576	0000072576	000000001	Extended Table (#1)
05: 00	00072576 0	000072638 0	00000063	Unallocated	
06: 01:00 0	0000072639	0000278207	0000205569	Linux (0x83)	
07: 01:01 0	0000278208	0000410255	0000132048	DOS Extended (0x0	05)
08: Meta 0	000278208	0000278208	000000001	Extended Table (#2)
09: 02:00 0	0000278271	0000410255	0000131985	Linux Swap / Solaris	s x86 (0x82)
10: 02:01 0	0000410256	0000513071	0000102816	DOS Extended (0x0	05)
11: Meta 0	0000410256	0000410256	000000001	Extended Table (#3)
		0000513071		. ()	
13: 03:01 0	0000513072	0002116799	0001603728	DOS Extended (0x0	05)
14: Meta 0			000000001	Extended Table (#4)
15: 04:00 0	0000513135	0002116799	0001603665	Linux (0x83)	
16: 00	02116800 0	002748977 0	000632178	Unallocated	CURITY AND HACKER CONFERENCE
De				BRUCON	IN BELGIUM
Da	ta Laye		THE REAL		BRISELS
	Sandre	o Melo – san	dro.melo@b	andtec.com.br - L	Bresil - 84

	Example of JLS command use
# jis -fe	ext tambaquicorp.img tail -n 10
4086:	Allocated FS Block 164013
4087:	Allocated FS Block 163957
4088:	Allocated FS Block 163962
4089:	Allocated FS Block 105
4090:	Allocated FS Block 131115
4091:	Allocated FS Block 163860
4092:	Allocated FS Block 65572
4093:	Allocated FS Block 65576
4094:	Allocated FS Block 65584
4095:	Allocated FS Block 65589
File 8	System Layer
	Sandro Melo – sandro.melo@bandtec.com.br - Brasil — 97

Metadata Layer

Once we have accessed the file system, the search for previously accessed files *-or even files already input into the system-* can be initiated, allowing us to search for evidence related to the incident.

The metadata analysis information is an extremely important step in the search for evidence and other actions in the fifth layer (File Layer).

Useful Metadata Tools

These show Inode structure info

- istat (static info)
- ils
- ifind
- This collects content of a specific Inode
- icat

This collects mactime info of all files in the Inode table and allows us to create the timeline.

fls

- mactime	
Metadata Layer	BRUCON BRUCON BRUCON BACKING CIRLIEVOES & WORKHOPS
Sandro Melo – sandro.melo	@bandtec.com.br - Brasil — 103

The all important timeline

This is a large report with all file info and its mactime:

The timeline is created based on MACtime (Modified, Accessed, Created Changed)

Info about when:

- the Operating system (0.5.) was installed.
- Changes and updates were made
- the O.S. Was last used
- and many other details related to the manipulated filesystem's files.

Sleuthkit Timeline creation

Metadata Searching

Exemplifying information collection from an allocated area.

And following, how to create a file with strings from allocated info:

dls -a -f ext image.img > image.img.dls

strings -a image.img.dls > image.img.dls.alocadas.strings

less image.img.dls.alocadas.strings

Metadata Searching

Exemplifying information collection from an unallocated area. And following, how to create a file with strings from unallocated info:

- # dls A f ext image.img > image.img.dls
- # strings -a image.img.dls > image.img.dls.naoalocadas.strings
- # less image.img.dls.naoalocadas.strings

Shows statistical info from data blocks - dstat

Enables us to list info from allocated, unallocated and slackspace areas

- dls

- dcat

Manipulate info from a specific data block - dcalc

File Layer Sandro Melo - sandro melo chendre com br - Brasil - 120

Tools for File Layer analysis

Enables one to consult file and directory information from an image, using metadata. fls

Similar to fls but using the specific Inode address. ffind

Enables one to sort the files according to their type. **sorter**

Enable one creates and searches and indexed database hash $\ensuremath{\mathsf{hfind}}$

Enables searches for hex and signature at any specified offset sigfind

Image Mounting

It's recommended that disk forensic image analysis be a process executed with caution, beginning with a media access preparation known as "mounting"

The image mounting of the partition with the means of analysis must be accessed as a read-only filesystem, without device file and executable file support.

Example of image mounting of multiple partitions

When dealing with this specific subject, it's necessary to analyze all hard disk images using losetup command.

losetup /dev/loop0 /imagem_hd.img

Example of image mounting of a partition with losetup

In a given scenario, where the mounting of a second listed partition is required, let's suppose that the initial sector of the partition is 73. Considering this case, this value must be multiplied by 512 to calculate the offset value.

Expr 73 * 512

The result determining the offset value is 37376

File Layer	BRUCH SECURITY AND BLACKER CONTERENCE IN BELLIUM BRUCH SUBJECT SUBJECTS
Sandro Melo – sa	ndro.melo@bandtec.com.br - Brasil — 133

Mouting a partition from the full disk image

Before the full disk image analysis , it's necessary to understand the status of the image partitioning structure:

sfdisk -luS HD_coleta.img

Gathered info about all partitions

Device Boot	Start	End	#sectors	Id	System	
HD.img1 *	63	72575	72513	83	Linux	
HD.img2	72576	2116799	2044224	5		
Extended						
HD.img3	0	-	0	0	Empty	
HD.img4	0		0	0	Empty	
HD.img5	72639	278207	205569	83	Linux	
HD.img6	278271	410255	131985	82	Linux	
swap / Solaris						
HD.img7	410319	513071	102753	83	Linux	
HD.img8	513135	2116799	1603665	83	Linux	
			SECURI	TY AND HA	CKER CONFERENCE	
File Layer			BRUCON		LGIUM CES & WORKSHOPS	
The Bayer		A STATE	- And	0.00		_
Sandro M	alo – sandro.	melo@bandte	c.com.br - Bras	11	67/	

Preparation for mounting of partition with losetup

losetup -a
expr 410319 * 512
210083328
losetup -o 210083328 /dev/loop2 HD_coleta.img
File Layer
File Layer
Gandro Melo - sandro.melo@bandite.combir - Brasil - 139

This shows mounted partition info

- # df
- Filesystem 1K-blocks Used Available Use% Mounted on
- /dev/sda2
 41294860
 4924120
 34273056
 13% /
- /dev/mapper/vg_ichegeki-LV_home
- 146166336 7445736 131295784 6% /home
- /dev/loop2 /media/loop0p2
- tmpfs 1026832 1020 1025812 1% /dev/shm

Using sorter and losetup commands together Here is an example of the use of the sorter command straight from a device prepared with the losetup command. # losetup /dev/loop0 image.img # sorter -f ext -l /dev/loop0

File Layer

Uses of find command

Search for files with SUID and SGID permission that can be used in Malware, such as backdoors:

- # find /img -perm -04000
- # find /img -perm -02000

find /img/ -type f \(-perm -04000 -o perm -02000 \) -exec ls -lg {} \;

File Layer	BEURITY AND HACKER CONTERENCE IN BELGIUM HACKING CHALLSOTS & WORKHOPS
Sandro Melo – sandro.m	elo@bandtec.com.br - Brasil — 151

Search for hidden files and directories like Unix, that is, files that begin with ".", which in a system such as Unix characterizes a file or directory as hidden.

This is a very common procedure used to find info on possible tools used by an intruder:

find /img/ -type f \(-name '.??*' -o -name '.
[^.]' \) -exec ls -lg {} \;

Search for artifacts with FIND

Many intruders try to hide info in system directories that are for specified data and are not constantly accessed. An example would be directories such as / dev and /lib:

find /img/dev/ -not -type c -not -type b ls -l

Search for artifacts with FIND

Searching for files that are access or metadata time modified after the time of a specified file, is another kind of search that should be performed since it can enable the identification of other potential artifacts:

find /img/ -anewer /img/etc/shadow Is -Iha

find /img/ -cnewer /img/etc/shadow Is -Iha

Searching for artifacts with FIND

Searching for files whose access time is within a determined time frame. This kind of search is also useful for artifact identification, in which case searching for atime and mtime is interesting:

- # find /img/ -atime 3 ls -lha
- # find /img/ -ctime 3 ls -lha
- # find /img/ -mtime 3 ls -lha
- # find /img/ -mtime 3 -or -atime 3 ls -lha

File Layer	BRUCON SECURITY AND HACKER CONTERENCE IN BELGIUM RACENS CHARGES
Sandro Melo – san	dro.melo@bandtec.com.br - Brasil — 163

To search for Malware info with the command rkhunter:

rkhunter -check -sk --rwo --rootdir img/ -createlogfile rkhunter_forensic.log

DEMO

Searching Slackspace

Slack space in file (data blocks) is a very important source of evidence in computer forensic investigation/

It is recommended that an exclusive extraction be done, keeping in mind that any computational evidence can be both very small AND very significant (such as the 4 bytes of an IP address).

Sandro Meio – sandro.meio@bandtec.com.br - Brasil — 174

File Layer

Investigating Slackspace

These allow us to get information about slackspace from an image:

dls -s image.img | slackspace.dls

strings -a slackspace.dls > slackspace.dls.strings

Recovery

File recovery is a necessary activity in practically every Post Mortem. However, this task demands specific tools.

Luckily, an Expert has several options when it comes to FLOSS tools.

Recovery

Another relevant point is the fact that some file systems not only perform the unlinking of the metadata and the data, but also overwrite the metadata with zeroes.

Example: EXT3

Useful tools for recovery

Magicrescue - together with DLS, this permits the recovery of the files

foremost - this recovers files from their headers and footers.

ddrescue - this recovers files from the image of any medium, but is a mode hard. It's necessary identify file offset address.

File Layer
Sandro Melo - sandro.melo@bandtec.com.br - Brasil - 184

File recovery using classic procedure

Attempting to recover a file from an image:

- a) Identify the addresses using metadata of unallocated files)
- # fls -t ext image.img > list.image.txt
- b) Retrieve content from the list (unallocated files)
- # cat list.image.txt

c) Recover it by using the ICAT command with specific content file by inode (e.g. 4157)

icat image.img 4157 > file.ppt

Recovery with Foremost

One way to recover files is by using FOREMOST, which automatically performs a complete analysis of the file system.

foremost -c foremost.conf -i image.img -o / recovery -T

File Layer
Sandro Melo - sandro melo (bandioc com br - Brasil - 188

Recovery with Foremost

Another way to use FOREMOST is to perform a search for types of file. Examples for images (e. g. jpg, gif, png), for PDF:

foremost -c foremost.conf -t jpeg,png,gif,pdf -v -i image.img -o /recovery -T

Conclusion

So, there are many FLOSS tools CLIS (Command Line On Steroids) and also GUI Tools (example: Autopsy, Pyflag, PTK) for the Post Mortem Process, and by combining the 5 Layer Concept with String Extraction it is possible to analyze everything related to an Incident.

Another fact is that the Linux OS is the better choice for Computing Forensics, because it supports many filesystems and you can customize your Forensic Box.

Every Forensic examiner should Compile his own kernel just like every Jedi builds his own light Saber" (The Cory Altheide - Google security) CONCEPTS

andro Melo – sandro.melo@bandtec.com.br - Brasil — 197

