
Distributed
Forensics

Across Time and Space
Google Incident Response

Introductions
● Johan Berggren <--> Timesketch core dev

● Daniel White <--> Plaso core dev

● Aaron Peterson <--> Turbinia core dev

● Thomas Chopitea <--> dfTimewolf core dev

● Brandon Chalk <--> Incident Response

● Tri Ngo <--> Detection & Response

Agenda
Today's lesson will cover the following tools for your investigation

● Plaso
○ An engaging exercise

● Timesketch
○ An more intriguing exercise

● GRR

● dfTimewolf
○ The ultimate exercise™

Ground Rules ... <YAWN>
● Ask questions. We will probably have answers.

● Team up with other participants. Investigating in pairs can help.

● Don't work ahead on exercises. You'll have enough time to go through them all.

● Make sure to use the cheatsheets, they'll save you a bunch of time

● Please poke around and experiment with the tools. And if you find a bug, let us
know!

Plaso

Ye old logs

Plaso

Source
Data
image.dd

Extraction
log2timeline.py Storage file

store.plaso

Export
psort.py

Output
image.csv

Analysis
psort.py

log2timeline.py .. Event Extraction
● $ log2timeline.py output.plaso /path/to/input/evidence

● $ log2timeline.py --help | less

● Processing can take a long time
○ Less if it's a filtered extraction

● Specific options
○ --parsers PARSER_LIST
○ --partitions PARTITIONS
○ --vss_stores VSS_STORES

log2timeline.py .. Filtering
● File filters

○ Eg. -f /usr/share/plaso/filter_windows.txt
○ Default “triage” filter files

■ /usr/share/plaso/filter*.txt
○ Format: https://github.com/log2timeline/plaso/wiki/Collection-Filters

● Artifact filters
○ Eg. --artifact_filters WindowsSystemRegistryFiles
○ Definitions from Forensic Artifacts project

Forensic Artifacts

Machine readable repository of artifact definitions.

psort.py .. Exporting
● $ psort.py -w output.log output.plaso
● $ psort.py --help | less
● $ psort.py -o l2tcsv -w registrar.csv registrar.plaso

● De-duplicates events

● Makes human readable
○ Expands Windows Event Log entries
○ Builds the "message" event field

● Specific options
○ -o FORMAT
○ --additional_fields ADDITIONAL_FIELDS

Plaso

Source
Data
image.dd

Extraction
log2timeline.py Storage file

store.plaso

Export
psort.py

Output
image.csv

Analysis
psort.pyExtraction

image_export.py Files

image_export.py .. Exporting
● $ image_export.py -w /tmp/export --names=NTUSER.DAT

registrar.dd
● $ image_export.py --help | less

● Exports files from source data
○ VSS

● Specific options
○ -f FILE_FILTER
○ --names NAMES
○ --signatures IDENTIFIERS

Bonus Features !!
● psteal.py

○ Plaso express
○ Runs log2timeline.py, then psort.py

● log2timeline.py
○ Hashing
○ Yara

● psort.py
○ Analysis plugins

Welcome to CFA

Time to Analyze
● SSH to your machine

○ Passphrase is "workshop"
○ Login with analyst##@<IP>

● Tools are pre-installed

● Source data is on a read-only disk at /mnt/case_data_readonly
○ Make local copies to work from if you need to

● Use screen/tmux

● Please don’t submit artifacts to Virustotal or other online malware or network
analysis service

Action Time! .. Ahmed's Request
● Generate a triage storage file and CSV output from the “registrar” image

○ Image is at /mnt/case_data_readonly/images/registrar.dd

● Export the malicious file “freedom_trebuchet.exe” from the registrar image

● BONUS: How did this malicious file come to be on the machine?

Action Time! .. Tip 1
● Generate a triage storage file and CSV output from the “registrar” image

○ Image is at /mnt/case_data_readonly/images/registrar.dd
○ Command line is something like:

■ log2timeline.py --partition 2 -f /usr/share/plaso/filter_windows.txt ~/registrar.plaso
/mnt/case_data_readonly/images/registrar.dd

○ And then:
■ psort.py -o l2tcsv -w registrar.csv registrar.plaso

● Export the malicious file “freedom_trebuchet.exe” from the registrar image

● BONUS: How did this malicious file come to be on the machine?

Action Time! .. Tip 2
● Generate a triage storage file and CSV output from the “registrar” image

○ Image is at /mnt/case_data/registrar.dd
○ Command line is something like:

■ log2timeline.py --partition 2 -f /usr/share/plaso/filter_windows.txt ~/registrar.plaso
/mnt/case_data_readonly/images/registrar.dd

○ And then:
■ psort.py -o l2tcsv -w registrar.csv registrar.plaso

● Export the malicious file “freedom_trebuchet.exe” from the registrar image
○ Command line is:

■ image_export.py -w /tmp/export --names=freedom_trebuchet.exe
/mnt/case_data_readonly/images/registrar.dd

■ File was stored in /Windows/AppPatch/Shared

● BONUS: How did this malicious file come to be on the machine?

Timesketch

Analyze Timelines

● Analysis frontend for timelines (e.g. Plaso)

● Evolution of sed|grep|awk

● Full text search using Elasticsearch query
language

● Designed around collaboration

● Multi-user, multi-timeline and multi-case

Timesketch

Source
Data
image.dd

Storage file
store.plaso

Export
psort.py

Timesketch 101
● An investigation is called a sketch.

● A timeline is a collection of events from a source.

● A sketch have one or more timelines

● You search across one or more timelines

● Query language is Elasticsearch query string format or full DSL

● All fields from Plaso are searchable

○ E.g: data_type:”windows:evtx:event” AND foobar

● You can save searches and you can load pre canned searches from search

templates to get you started

Anatomy of an Event
● data_type

○ Indication of what sort of thing the event is
○ eg. windows:evtx:record

● filename
○ File the event was extracted from
○ eg. /Windows/System32/winevt/Logs/Security.evtx

● event_identifier
○ Example event-specific attribute
○ eg. 4624

● message
○ Human readable summary of the event, generated from attributes by

psort
○ eg. [4624 / 0x1210] Source Name:

Microsoft-Windows-Security-Auditing Strings:

Connect to Timesketch
● https://timesketch.cyberforensicaffordances.club/

● Login with your analystX/workshop

● Our sketch is named “Greendale ”

● There are some Search templates to get you started

Action Time .. Investigate!
● How did the intruders get on to the registrar’s machine?

● How did Student-PC1 get compromised?

● Is there any other evidence of attacker activity you can find?

GRR

gather all the things

GRR Overview
● Remote forensics tool

● Clients connect to a GRR server

● Users (you) interact with the server which handles interactions with clients

● Clients upload stuff (files, information) to the server

● Users download stuff (files, information) to analysis systems

Flows and Hunts
● “Flows” are scheduled on clients to do collection

○ Upload a file
○ Upload an artifact
○ List open sockets

● “Hunts” run the same flow on many/all connected clients
○ Eg. Upload the contents of the UserShellHistory artifact

● Everything is asynchronous

● Manual interaction isn’t all that scalable

dfTimewolf

because ... wolves

dfTimewolf Overview
Goal: Automate manual, repetitive workflows as much as
possible

● CLI tool acting as glue between different APIs and tools

● Uses “modules” (GRR, plaso, Timesketch, GCP...)

● Modules are chained through “recipes”:

○ GRR → plaso → Timesketch

● Recipes define parameters for each module

○ Can be overridden through the CLI for one-offs

GRR & dfTimewolf
● Dftimewolf can easily launch GRR Hunts and Flows and collect results

● It can process the results with Plaso

● It can send a plaso output file directly to timesketch

This is exactly what the grr_artifact_hosts recipe does!

Let's collect some artifacts!
“Launch artifact collection on GRR hosts, collect results, process them through plaso,

send results to Timesketch”

$ dftimewolf grr_artifact_hosts host1,host2
[--artifact_list, --sketch_id]

Greendale-as-a-Service
● As part of the “GaaS” program, Greendale has moved some of its infrastructure to

the cloud

● Students can use their own GaaS instances (Ubuntu VMs) through SSH

● All GaaS instances run GRR, but there’s no other logging.

● Greendale’s SOC gets an alert that brute-force attacks were attempted on one of

the GaaS servers, greendale-webserver

“Please investigate”

Forensicate !!
Using dftimewolf, collect evidence and answer these questions:

1. Was the bruteforce attack on greendale-webserver successful?

a. Hint: Use the grr_artifact_hosts recipe to build a timeline from authentication logs

2. Identify the next computer to investigate

a. Hint: Use Timesketch to identify which host the key is usually used from.

3. How were SSH keys exfiltrated from mccloud-gaas?

a. Hint: Do a targeted GRR artifact collection with AllUsersShellHistory

4. Bonus: Can you use dftimewolf to recover the SSH key archive?

a. Hint: Use the grr_fetch_files recipe.

Links & Contact

● dfTimewolf
○ https://github.com/log2timeline/dftimewo

lf
○ log2timeline-discuss@googlegroups.com

○ Apache License v2

● GRR
○ https://github.com/google/grr
○ grr-users@googlegroups.com
○ Apache License v2

● Plaso
○ https://github.com/log2timeline/plaso
○ log2timeline-discuss@googlegroups.com
○ Apache License v2

● Timesketch
○ https://github.com/google/timesketch
○ https://demo.timesketch.org
○ timesketch-dev@googlegroups.com
○ Apache License v2

Thanks from the cyber pony

