Security Transition from 4G to 5G: are we Secure enough?

Altaf Shaik
(Technische Universität Berlin, Germany)

Ravishankar Borgaonkar
(SINTEF Digital, Norway)

Brucon 2019, Ghent, Belgium
5G?

X Human Communication

✓ Machine Communication
5G Sec.?

New Services (Use Cases)

LTE Security Requirements + Enhancements

New Networking Technologies NFV/SDN

5G Security Requirements

Source: https://www.informationsecuritybuzz.com/articles/security-challenges-next-generation-5g-mobile-networks/
5G Security Elements

Cell

Device identifiers/
Credentials/

Authentication+/ Encryption/
Integrity+/ Privacy+/ Resilience+

Edge Cloud

Mobile Edge Computing/

Network Slicing Security/
NFV/SDN Security/

Central Cloud
Security Evolution (OTA)

- **2G**
 - no mutual authentication

- **3G**
 - mutual authentication
 - integrity protection

- **4G**
 - mutual authentication
 - deeper mandatory integrity protection

- **5G**
 - mutual authentication ++
 - deeper mandatory protection features++
IMSI Catchers in 5G?
5G Security?

- 5G Security >> 4G ? (What’s new)
- Same Protocols, Same security algorithms
- Attacks in 4G/LTE fixed.?
 - Downgrade attacks, DoS attacks, Location tracking
- What’s not fixed in 4G – **copy paste** to 5G

10.10.2019
Capabilities?

UE Capabilities

- **Core network Capabilities**¹
 (Security algorithms, voice calling support, V2V)

- **Radio access Capabilities**²
 (frequency bands, Rx & Tx features, MIMO, CA, Category)

1. 3GPP TS 24.301, 23.401, 24.008
2. 3GPP TS 36.331
Core Capabilities

Non-Access-Stratum (NAS) PDU

- 0000 = Security header type: Plain NAS message, not security protected (0)
- 011 = Protocol discriminator: EPS mobility management messages (0x7)
- NAS EPS Mobility Management Message Type: Attach request (0x41)
- 0... = Type of security context flag (TSC): Native security context (for KSIasme)
- .111 = NAS key set identifier: No key is available (7)
- 0... = Spare bit(s): 0x00
-010 = EPS attach type: Combined EPS/IMSI attach (2)

- EPS mobile identity
- UE network capability
- ESM message container
- DRX Parameter
- MS Network Capability
- TMSI Status
- Mobile station classmark 2
- Mobile station classmark 3
- Supported Codec List - Supported Codecs
- Voice Domain Preference and UE’s Usage Setting
- MS network feature support
Capabilities 5G

- V2X: Connected Cars
- Prose (D2D): Location services
- CIoT: IoT specific

![Figure 9.9.3.34.1: UE network capability information element](image-url)
Radio Capabilities

- UE-CapabilityRAT-Container
 - rat-Type: eutra (0)
 - ueCapabilityRAT-Container: c9a000024c
 - UE-EUTRA-Capability
 - accessStratumRelease: rel10 (2)
 - ue-Category: 4
 - pdcp-Parameters
 - phyLayerParameters
 - rf-Parameters
 - measParameters
 - featureGroupIndicators: 7f4ffe92
 - interRAT-Parameters
 - nonCriticalExtension
 - phyLayerParameters-v920

- interRAT-ParametersGERAN-v920
- interRAT-ParametersUTRA-v920
- csg-ProximityIndicationParameters-r9
- neighCellSI-AcquisitionParameters-r9
- son-Parameters-r9
- nonCriticalExtension
 - lateNonCriticalExtension: 8c000000
 - UE-EUTRA-Capability-v9a0-IEs
 - featureGroupIndRel19Add-r9: c
 - nonCriticalExtension
 - ue-Category-v1020: 6
 - rf-Parameters-v1020
 - measParameters-v1020
 - featureGroupIndRel10-r10: 68240
 - ue-BasedNetwPerfMeasParameters-
 - nonCriticalExtension
 - rf-Parameters-v1060
LTE Registration

- UE Capabilities
 - sent to network while registration
 - Stored at network for long periods
 - visible in plain-text over-the-air
 - Passive and active attacks
Issue?

- Accessible by rogue base stations
- Sent plain-text over the air
- Standard + Implementation bugs
Attacks?

- MNmap (active or passive)
- Bidding down (MITM)
- Battery Drain (MITM)
Setup – LTE MitM attacker

- **Hardware**
 - 2 X (USRP B210 + Laptops)
 - Phones, Quectel modems, cars, IoT devices, trackers, laptops, routers....

- **Software**
 - SRSLTE

- **Attacks tested with real devices and commercial networks**
1. MNmap

- (Mobile Network Mapping)
 similar to IP Nmap

- Maker
- Model
- OS
- Applications
- Version
1. MNmap

Identify any Cellular device in the wild

Chip Maker, Device Model, Operating System, Application of device, Baseband Software Version
Identification – How

Baseband Vendors implement capabilities differently

- For e.g., Qualcomm Chipsets always Disable EAI0
- Many Capabilities are optional, (disabled/enabled)

Each target Application requires different set of UE Capabilities

- V2V for automated car
- Voice calling and codec support for phone
- GPS capability for tracker
- Data only support for routers, USB data sticks (SMS only)
<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Baseband Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Samsung</td>
<td>Galaxy Alpha</td>
<td>Intel XMM7260</td>
</tr>
<tr>
<td>Samsung</td>
<td>Galaxy S6</td>
<td>Samsung Exynos Modem 333</td>
</tr>
<tr>
<td>Samsung</td>
<td>Galaxy S7</td>
<td>Samsung Exynos 8890</td>
</tr>
<tr>
<td>Samsung</td>
<td>Galaxy S8</td>
<td>Samsung Exynos 8895</td>
</tr>
<tr>
<td>Huawei</td>
<td>Honor 7</td>
<td>Kirin 935</td>
</tr>
<tr>
<td>Huawei</td>
<td>P20</td>
<td>Kirin 970</td>
</tr>
<tr>
<td>Huawei</td>
<td>One E9</td>
<td>MediaTek X10</td>
</tr>
<tr>
<td>LG</td>
<td>G Flex 2</td>
<td>Qualcomm MSM8994</td>
</tr>
<tr>
<td>Sony</td>
<td>Xperia Z5</td>
<td>Qualcomm MSM8944</td>
</tr>
<tr>
<td>Sony</td>
<td>Xperia X</td>
<td>Qualcomm MSM8956</td>
</tr>
<tr>
<td>GlocalMe</td>
<td>Gemini</td>
<td>MediaTek X27</td>
</tr>
<tr>
<td>Planet Computer</td>
<td>iPhone 6</td>
<td>Qualcomm MDM9625</td>
</tr>
<tr>
<td>Apple</td>
<td>iPhone 8</td>
<td>Intel XMM7480</td>
</tr>
<tr>
<td>Apple</td>
<td>iPhone 8 (US)</td>
<td>Qualcomm MDM9655</td>
</tr>
<tr>
<td>Apple</td>
<td>iPhone X (US)</td>
<td>Qualcomm MDM9655</td>
</tr>
<tr>
<td>Google</td>
<td>Nexus 5X</td>
<td>Qualcomm MSM8992</td>
</tr>
<tr>
<td>Nokia</td>
<td>8110 4G</td>
<td>Qualcomm MSM8905</td>
</tr>
<tr>
<td>Asus</td>
<td>ZenFone 2E</td>
<td>Intel XMM7160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Model</th>
<th>Baseband Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>E3372</td>
<td>Huawei</td>
</tr>
<tr>
<td>Samsung</td>
<td>GT-B3740</td>
<td>Samsung CMC220</td>
</tr>
<tr>
<td>Sierra Wireless</td>
<td>EM7455</td>
<td>Qualcomm MDM9635</td>
</tr>
<tr>
<td>Fibocom</td>
<td>L850-GL</td>
<td>Intel XMM7360</td>
</tr>
<tr>
<td>Telit</td>
<td>LN930</td>
<td>Intel XMM7160</td>
</tr>
<tr>
<td>AVM</td>
<td>FritzBox LTE</td>
<td>Intel XMM7160</td>
</tr>
<tr>
<td>Huawei</td>
<td>B310s</td>
<td>Huawei</td>
</tr>
<tr>
<td>Netgear</td>
<td>Nighthawk</td>
<td>Qualcomm MDM9250</td>
</tr>
<tr>
<td>GlocalMe</td>
<td>G2</td>
<td>Qualcomm MDM8926</td>
</tr>
<tr>
<td>Quectel</td>
<td>BC68</td>
<td>Huawei NB-IoT</td>
</tr>
<tr>
<td>Quectel</td>
<td>BC66</td>
<td>MediaTek NB-IoT</td>
</tr>
<tr>
<td>Quectel</td>
<td>BG69</td>
<td>Qualcomm MDM9206</td>
</tr>
<tr>
<td>Audi</td>
<td>A6</td>
<td>Qualcomm MDM9635</td>
</tr>
<tr>
<td>Samsung</td>
<td>SM-V110K</td>
<td>Qualcomm MDM9206</td>
</tr>
<tr>
<td>Mobile Eco</td>
<td>ME-K60KL</td>
<td>Qualcomm MDM9206</td>
</tr>
<tr>
<td>Apple</td>
<td>Watch Series 3</td>
<td>Qualcomm MDM9635M</td>
</tr>
<tr>
<td>Huawei</td>
<td>MediaPad M5</td>
<td>Kirin 960</td>
</tr>
<tr>
<td>Apple</td>
<td>iPad 5th gen</td>
<td>Qualcomm MDM9625M</td>
</tr>
</tbody>
</table>
Ref model

Devices
- Baseband vendor
- Application
- Chipset name
- 3GPP release
Fingerprints

Implementation differences among Baseband vendors

<table>
<thead>
<tr>
<th>Capability</th>
<th>Huawei</th>
<th>Samsung</th>
<th>Intel</th>
<th>Mediatek</th>
<th>Qualcomm</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM Service Prompt</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>EIA0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Access class control for CSFB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Extended Measurement Capability</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Chipset info

List of Qualcomm Snapdragon

This is a list of Qualcomm Snapdragon chips. Snapdragon is a family of System-on-a-Chip (SoC) platform processors created by Qualcomm. They are mainly targeted for use in smartphones, tablets, and smartbook devices.

Contents
- 1 Snapdragon S1
- 2 Snapdragon S2
- 3 Snapdragon S3
- 4 Snapdragon S4 series
- 5 Snapdragon 200 series
- 6 Snapdragon 400 series
- 7 Snapdragon 600 series
- 8 Snapdragon 800 series
- 9 Snapdragon 800 Series
- 10 Hardware codec support
- 11 Wearable platforms
- 12 Automotive platforms
- 13 Embedded platforms
- 14 Vision Intelligence Platform
- 15 Home Hub and Smart Audio Platforms

HiSilicon

HiSilicon (Chinese: 海思, pinyin: Hǎishì) is a Chinese semiconductor company based in Shenzhen, China. It is a subsidiary of the Chinese multinational electronics company Huawei. HiSilicon purchases licenses for CPU designs from ARM, including MP-55, ARM Cortex-A5 MPCore, ARM Cortex-A15 MPCore, and ARM Cortex-A12 MPCore. They also license chips from Vivante Corporation for their G7 series, and they are planning to license cores from ARM for their GC4 series of GPUs. HiSilicon is reputed to be the largest domestic fabless semiconductor company.

Contents
- 1 Products
 - 1.1 K3V2
 - 1.2 K3V2E
 - 1.3 K5 V60
 - 1.4 K665, 655, 658, 659
 - 1.5 K5 70
 - 1.6 K5 910 and 910T
 - 1.7 K5 920, 925 and 928
 - 1.8 K5 930 and 935
 - 1.9 K5 950 and 955
 - 1.10 K5 960
 - 1.11 K5 970
 - 1.12 K5 980
 - 1.13 Ascend 310
 - 1.14 Ascend 910

MediaTek

MediaTek Inc. (Chinese: 聯發科技股份有限公司, pinyin: Liánfā Kējì Gōngsī Fēi Gùnshì Yǒuxiàn Gōngsī) is a Taiwanese multinational semiconductor design company. It is one of the largest semiconductor design companies in the world, with the revenue of the company. Headquartered in Hsinchu, Taiwan, the company has 25 offices in 13 countries. In 1997, MediaTek has been creating chipsets for the global market.

Contents
- 1 Corporate history
- 2 Acquisitions
- 3 Financial performance
- 4 Innovations
- 5 Product list
 - 5.1 Smartphone processors
 - 5.1.1 2003–2007
 - 5.1.2 2008–2012
 - 5.1.3 2013 and later (ARMv7)
 - 5.1.3.1 Dual-core
 - 5.1.3.2 Quad-core
 - 5.1.3.3 Hexa-core, octa-core and deca-core
 - 5.1.4 ARMv8
 - 5.1.4.1 Quad-core
 - 5.1.4.2 Octa- and deca-core
 - 5.2 Modem processors
 - 5.3 Standalone application and tablet processors

Exynos

Exynos (from the Greek words exypso, meaning “to thrust up”) is a series of System-on-a-Chip (SoC) platforms developed and manufactured by Samsung.

Contents
- 1 History
- 2 List of ARMv7 Exynos SoCs
- 3 List of ARMv8 Exynos SoCs
- 4 Similar platforms
 - 4.1 AMLogic
 - 4.2 Rockchip
 - 4.3 Marvell ARMADA
 - 4.4 Qualcomm Snapdragon

10.10.2019
Half-way

1. Baseband Maker
2. Baseband Model
3. List of supported devices for the chipset
4. Identify the right device and application
Fingerprints

Difference b/w phone and other devices

<table>
<thead>
<tr>
<th>Capability</th>
<th>Phone</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>UE's Usage setting</td>
<td>Voice or Data</td>
<td>Not present</td>
</tr>
<tr>
<td>Voice domain preference</td>
<td>CS Voice or PS Voice</td>
<td>Not present</td>
</tr>
<tr>
<td>UMTS AMR codec</td>
<td>Present</td>
<td>Not</td>
</tr>
</tbody>
</table>

Phone and preferred Baseband

<table>
<thead>
<tr>
<th>Phone</th>
<th>Baseband</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huawei</td>
<td>Huawei</td>
</tr>
<tr>
<td>Samsung</td>
<td>Samsung</td>
</tr>
<tr>
<td>Apple</td>
<td>Intel or QCT</td>
</tr>
</tbody>
</table>

Difference b/w iOS and Android

<table>
<thead>
<tr>
<th>Capability</th>
<th>Android</th>
<th>iOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS assisted GPS</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Voice over PS-HS- UTRA-FDD-r9</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Difference b/w cellular and cellular IoT

<table>
<thead>
<tr>
<th>Capability</th>
<th>Cellular IoT</th>
<th>Cellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSM Timer</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>T3412 ext period TAU timer</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
MNmap issues

- SIM card can have affect on capabilities
 - enabled/disabled – operator setting, e.g., bands

- IoT applications Lte-M vs NB-IoT
 - Timer values (low for smart meters, high for asset trackers)

- Success and failures in detecting (close to round off, multiple options)
What next

- Passive MNmap also works (active base station not required)

- Privacy
 - Link IMSI to device capabilities on 4G
 - (associate device fingerprints to people)

- Launch target specific attack

- Open source MNmap : share traces and automated tool
2. Bidding down

- Hijacking
 - Radio Capabilities
 - MitM relay before OTA Security
 - Network/Phone cannot detect
Bidding down

- Radio Capabilities are modified
 - UE Category changed (Cat 12 -> Cat 1)
 - CA and MIMO are disabled
 - Frequency Bands are removed
 - VoLTE mandatory requirements are disabled
 - V2V capabilities can be removed
Tests with real networks

- LTE service downgrade (with elite USIM)
 - Iphone 8 and LTE Netgear router (Qualcomm Basebands)
 - Data Rate (downlink) 48 Mbps to 2 Mbps (USA and Europe)
 - VoLTE calls are denied to UE (CSFB used)
 - Handovers to 2G/3G due to lack of band support – downgraded
Impact

- **22 out of 32** Tested LTE networks worldwide (Europe, Asia, NA) are affected (USA, Switzerland, France, Japan, Korea Netherlands, UK, Belgium, Iceland)

- Persistent for 7 days
 - Capabilities are **Cached** at Core network
 - **Restart** device for normal operation

- **Radio is bottleneck for speed data service**
Why without/before Security

3GPP TR 33.809 V0.2.0 (2019-02)

5.1 Key Issue #1: Security of unprotected unicast messages

5.1.1 Key issue details

This key issue covers both the uplink and downlink unicast message which could be sent unprotected. An example of unprotected uplink message is RRC UECapabilityInformation, and examples of unprotected downlink messages are RRC UECapabilityEnquiry, and REJECTs in RRC/NAS layers.

In current 3GPP standards, it has been a design choice to allow RRC UECapabilityEnquiry and RRC UECapabilityInformations messages to be sent unprotected "before" AS security activation. The reason for allowing that is to enable the network to do early optimization for better service/connectivity. It means that during the RRC

To do early optimization for better service/connectivity
3. Battery Drain

- **NB-IoT** (Narrow Band)
- **Power Saving Mode (PSM)**
 - OFF when not in use
Tests

- PSM disabled (UE and network don’t detect)

- Continuous activity - Neighbor cell measurements
 - drains battery *(10 year battery??)*

- Experiment with NB-IoT UE (Quectel BC68 modem)
 - Reconnects after 310 hours (13 days)
 - Battery lifetime reduced by 5 times

- Persistent attack: restart required to restore
Vulnerability Status

- Reported to GSMA, 3GPP SA3 and other affected operators and vendors
- Positive acknowledgement / could be implementation issues
- Thanks to GSMA, SA3: 3GPP to add fixes
- Core network capabilities are still unprotected
 - MNmap still possible on 5G: passive, active
Fixes

✓ Fixes in LTE release 14 for NB-IoT will be commercial soon

✓ UE Capabilities should be security protected: accessible only after mutual authentication
 • Operators eNodeB implementation/configuration should be updated

✓ Capabilities should be replayed to UE after NAS security setup for verification – Hash of them
 • V2V, Voice calling features, PSM timers, etc.
Thank you

mailto:altaf329@sect.tu-berlin.de
mailto:rbbo@kth.se
mailto:Director@kaitiaki.in