
*
Catching

WMI lateral movement

in an

enterprise network

Credits: Cat and mouse chase by Jeroen Moes (CC BY-SA 2.0)

http://creativecommons.org/licenses/by-sa/2.0/ and

https://www.flickr.com/photos/jeroenmoes/4265223393

Jaco Blokker

https://www.flickr.com/photos/jeroenmoes/4265223393
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
https://www.flickr.com/photos/jeroenmoes/4265223393

About Jaco Blokker

15y infosec, 6y Senior member Blue team KPN

Event analysis

Develop, tune (network) detection, Snort

Bottom-line-up-front

Network detection IDS ruleset:

github.com/KPN-CISO/Network-Detection

Why sharing it ?

Agenda

• Method, approach
• Findings
• What worked and what not

…Starting point for future enhancements

About WMI

Dmtf standards
• WBEM Web-Based Enterprise Management
• CIM Common Information Model

Microsoft’s implementation:
Windows Management Instrumentation

WMI characteristics

Core OS component
• Read, manipulate, execute

Access defaults
• local administrator (allowed)

• hostbased firewall (blocked)

Transports
• WS-man (Winrm)

• RPC/DCOM [this research]

Different perspectives

System administrator
Attacker
Defender

How to detect + distinguish legit / non-legit?

Just theory?

Define monitoring objectives

• Is it doable?
• Non-legit usage vs vulnerability detection
• Detect anomalies on network level

Support defender with:
• Evidence, context (who/what), attempts (success/failure)

Our very first attempt

• What does WMI look like from network perspective?

• PS> Get-Wmiobject Win32_computersystem –
Computername WIN-J0GNFCAISH2.testing.local –
Credential <lookwhoistalking> Ipconfig.exe

• [Not authorized]. We knew.

On the wire

Initial payload filter

• c4 fe fc 99 60 52 1b 10 bb cb 00 aa 00 21 34 7a

• Turned it into a rule like:
(“guess this is WMI !”;
content:”|c4 fe fc 99 60 52 1b 10 bb cb 00 aa 00 21 34 7a|”)

• Risk of false positive?

RPC call

From: coned.utclu.ro/~salomie

Map onto RPC preprocessor

dce_iface dce_opnum

dce_stub_data

Detection pattern changed into

(msg:“guess this is WMI !”;
dce_iface:99fcfec4-5260-101b-bbcb-00aa0021347a; …)

> Did a re-test: triggers again!

Preprocessor abstracts away: used endianess type

Differentiate legit - non-legit

• Up to here: 1st detection pattern defined

• Next, few suggestions to distinguish:
• Based on time? Used credentials ? traffic path?

• What is expected to be legitimate traffic in the enterprise?

Differentiate legit - non-legit

• Engage with system administrators

• Establish a policy if not already there:
“We shall administer <this and that> using WMI only from
< *endpoints > “

*) Typically steppingstone-like

Pitfall: change management

Payload pattern and policy combined

Whitelist approach:

alert tcp !$legitimate_sources any -> $protected_targets 135
…
(msg:"guess this is WMI !";
dce_iface:99fcfec4-5260-101b-bbcb-00aa0021347a; ..)

Next: offer our rule for re-test

Revisited by redteam

Various clients
• Windows powershell
• Linux Impacket (low-level network protocol library)

• Using unauthorized account

Results

• Windows client triggered the rule as expected

• However: “Linux” based client did not ;-(

• What next ?

[MS-WMI] Protocol Initialization

• “The client MUST call the IWbemLevel1Login::NTLMLogin
method.

• The IWbemLevel1Login interface allows a user to connect to the

management services interface in a particular namespace.

• The interface MUST be uniquely identified by the UUID
{F309AD18-D86A-11d0-A075-00C04FB68820} “

From: https://msdn.microsoft.com/en-us/library/dd208060.aspx

https://msdn.microsoft.com/en-us/library/cc250759.aspx
https://msdn.microsoft.com/en-us/library/cc250695.aspx#gt_c4813fc3-b2e5-4aa3-bde7-421d950d68d3
https://msdn.microsoft.com/en-us/library/dd208060.aspx

3.1 Server Details WMI

CLSID_WbemLevel1Login ({8BC3F05E-D86B-11D0-A075-00C04FB68820})

CLSID_WbemBackupRestore ({C49E32C6-BC8B-11D2-85D4-00105A1F8304})

..

The following GUIDs are used for the interfaces:

IID_IWbemLevel1Login ({F309AD18-D86A-11d0-A075-00C04FB68820})

IID_IWbemServices ({9556DC99-828C-11CF-A37E-00AA003240C7})

IID_IWbemBackupRestore ({C49E32C7-BC8B-11d2-85D4-00105A1F8304})

IID_IWbemBackupRestoreEx ({A359DEC5-E813-4834-8A2A-BA7F1D777D76})

…

From: https://msdn.microsoft.com/en-us/library/dd208060.aspx

https://msdn.microsoft.com/en-us/library/dd208060.aspx

Do cross-check

https://github.com/CoreSecurity/impacket/

https://github.com/CoreSecurity/impacket/search?utf8=%E2%9C%93&q=clsid&type

Detection pattern category

Rpc stage:

• Rule – AppID for service winmgmt

Indicator WMI, presumed success

• IID Iwbemlevel../opnum 6

• IID Iwbemservices/.. (Bonus)

Ruleset becomes (condensed)

‘RPC’ stage

• #100: dce_iface:000001a0-0000-0000-c000-000000000046; dce_opnum: 4;

dce_stub_data; content: "|5e f0 c3 8b 6b d8 d0 11 a0 75 00 c0 4f b6 88 20|

‘WMI’ stage; Golden Rule:

• #110: dce_iface:F309AD18-D86A-11d0-A075-00C04FB68820; dce_opnum:6

• #114: dce_iface:9556dc99-828c-11cf-a37e-00aa003240c7

• #116, #120: likewise for IID’s IEnumwbemobject/IWbemclassobject

Detect bruteforce attempts

• Indicator WMI call (rule #110) and subsequent calls may
not happen

• Force multiple failed attempts:

• PS C:>\wmic /node: “10.1.1.101" process call create
"cmd.exe /c ipconfig.exe"

Server replies with ‘fault PDU’

Fault PDU structure

• pubs.opengroup.org/
• onlinepubs/9629399/chap12.htm

RPC access denied

(msg:" RPC PDU - fault_access_denied response
0x00000005"; flow:to_client, ... ;

content:"|05 00 03|"; offset:0; depth:3;

byte_test:4,=,0x00000005,24,dce;

metadata:service dcerpc; …)

Test the rule set

• Engage with system administrators
• They did the heavy lifting!

• Be aware: keep policy implementation up-to-date

Test blueprint

• Targets { Windows 2012R2/2016 }

• Clients { Windows cli:wmic, ps:get-wmiobject,
imp:wmiquery, imp:wmiexec }

• Fully privileged/authorized + unprivileged account

• Result from client perspective: success, failure

Visualize results as heatmap

RPC

WMI

WMI

Reject

“Denied”“Success”

Use case

Workaround for reject rule

(msg:"RPC generic reject"; content:"|05 00 03|"; offset:0; depth:3;

byte_test:4,=,0x00000005,24,little; …

Note:

• “access denied” common as part of server-client negotation

• better: use as correlation, apply with threshold

• maybe better: indicator higher in protocol stack

Re-test compare both versions reject rule

RPC

WMI

WMI

Reject

“Request denied”

Use case

Up to here

• Improved rule set
• Testing involved both system administrators & redteam
• Rules fire when expected to fire, and when not

Are we done and ready to deploy?

#1 en #2 major concern for a security analyst?

How do we know and find out?

• False positives

• False negatives

Assess the ruleset quality

• From attacker defender perspective

• What means are left for an attacker to evade detection
defender to assess the ruleset pro-actively?

WMI security

• Namespace (S/DACL, securable objects)

• Transport level

• DCOM/RPC

• Impersonation

• Authentication level options

• Server and client require Mutual agreement

• None / connect / call / pkt / pktintegrty / pkt_privacy

• “Privacy”: encrypts argument values

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rpce/425a7c53-c33a-4868-8e5b-2a850d40dc73

Options and defaults

• Dcomcnfg.exe

• UI to registry

• Machine wide

• Process wide

• Default level: “Connect”

Setup pristine lab evironment

Client / Server
• W 2016 domain controller + member + standalone
• W 10 standalone
• Linux client (impacket)

Encryption
• [d] default
• [ec] client only
• [ecs] client + server

Client methods

1. Get-CimInstance -ClassName Win32_OperatingSystem -CimSession $csd

2. Get-WmiObject win32_computersystem -ComputerName _ -Credential adm

3. wmic /node:<> /user:"administrator" cpu get name

4. wmiquery.py <>/administrator@<> -file wql.file

5. pth-wmic -U Administrator%<> //<> "select Name from Win32_UserAccount"

6. like @1, with invalid password

7. like @ 5, with invalid password

8. like @2, valid credentials, however not authorized

Default

RPC

WMI

WMI

Reject

1 2 3 4

Use case

Win PS LinuxWmic Reject

Force clientside encryption (“ec”)

RPC

WMI

WMI

Reject

Use case

Win PS LinuxWmic

Force pkt_privacy on both sides

RPC

WMI

WMI

Reject

Use case

1 2

Win PS LinuxWmic

Extend the ruleset

• iwbemlevel1login: f309ad18-d86a-11d0-a075-00c04fb68820

Rule #112 -> "|18 ad 09 f3 6a d8 d0 11 a0 75 00 c0 4f b6 88 20|”

• IWebmServices: 9556dc99-828c-11cf-a37e-00aa003240c7

Rule #115 -> "|99 dc 56 95 8c 82 cf 11 a3 7e 00 aa 00 32 40 c7|”

Re-run with extended rule set

RPC

WMI

WMI

Reject

Use case

Win PS LinuxWmic

Takeaways

• Network level detection is doable
• Github.com/KPN-CISO/Network-Detection
• Cross-team collaboration is key
• Based on testing so far, happy with FP
• FN a concern

• Future research evasion techniques, improve detection,
resolve open ends

Final thoughts…

“ One sunny day
A few lacking rules became a big takeaway
To overcome the annoyance and frustration
With the support of both admins and reds

We fulfilled the promise nothing is beyond our reach
Now it’s time to call on you to have a look and make it better
Administrator, defender or attacker, the role doesn’t matter

Suggesting to combine it with a Belgian beer
Let me say it loud and clear

I feel confident we can work it out together ! “

