
PIC Your Malware!

Whoami

➢Ben Heimerdinger and Sebastian Feldmann

➢Specialized on Offensive Tooling / Evasion

➢Code White Red Team (Ulm/Mannheim, Germany)

2

Syllabus

➢Concepts for fileless malware

⚫ Artifacts popular in memory PE loaders leave (Reflective DLL, Donut)

➢Leveraging position independent code (PIC) to avoid these artifacts

➢Tool release: Lsass dumping without ProcessAccess event (as PIC)

➢Solving some tedious problems of creating PIC

➢Protecting tools with self-decrypting PIC

➢Pipelining the build process

3

Fileless Malware and Memory Artifacts

Motivation for Fileless Malware

➢Development of malware is a complex software project

➢ If analysts ever find your malware, all hard work is burned

➢Therefore, sophisticated malware has a ‘Plug and Play’ concept for most of

its capabilities

⚫ Malware consists of a main module. Capabilities are then loaded on the fly

⚫ If one module is flagged it is easy to replace / only one module needs to be

adapted

5

Motivation for Fileless Malware

6

Plug and Play
➢Back in the days, an extension was dropped as a DLL and loaded from disk

⚫ Problem 1: AV heuristics / automatic analysis of dropped files

⚫ Problem 2: Files left on the filesystem will be forgotten by operators

➢Malware authors started looking for ways to load extensions without ever

touching dis

➢Back in the days, an extension was dropped as a DLL and loaded from disk

⚫ Problem 1: AV heuristics / automatic analysis of dropped files

⚫ Problem 2: Files left on the filesystem will be forgotten by operators

➢Malware authors started looking for ways to load extensions without ever

touching disk

7

Fileless Malware

➢Monitoring of memory operations is prone to false positives and also

resource intense.

⚫ DRM uses similar concepts for legitimate use

➢Many concepts for fileless malware: {Reflective DLL, sRDI/Donut, in memory

.NET}

⚫ All of them have their drawbacks which enable analysts and security

products to find them

8

Reflective DLL

➢Self loading DLL

⚫ First implemented by Stephen Fewer in 2011

➢Regular DLL with one special export: ReflectiveLoader

⚫ Implements a PE loader: takes care of fixing IAT, Relocations and so on

⚫ Loader itself is fully position independent (PIC)

➢Malware needs to be able to find the ReflectiveLoader in memory

⚫ Requires additional code

9

Recap Reflective DLL

10

PE2Shellcode

➢ Implementation of a PE Loader as pure PIC

⚫ PIC embeds a given a PE file which it loads and executes

⚫ No PE loader or LoadLibraryR has to be compiled into malware

➢PE are not actually converted they are just wrapped with a PIC PE loader

➢PE loader finds the embedded PE file and loads it in memory

➢PE – To – Shellcode - Concept

➢Example open source implementations:

⚫ https://github.com/hasherezade/pe_to_shellcode

⚫ https://github.com/TheWover/donut

⚫ https://github.com/monoxgas/sRDI

11

https://github.com/hasherezade/pe_to_shellcode
https://github.com/TheWover/donut
https://github.com/monoxgas/sRDI

PIC PE Loader

12

Suspicious Memory Artifacts

➢PE loaders need to allocate more memory to load the PE file

⚫ Some sections need to be executable (.text segment)

➢Suspicious Memory Pages such as R(W)X

➢Private Committed and Executable Memory

⚫ VirtualAlloc

⚫ Not backed by a file on disk

⚫ R(W)X pages should only exist as part of a PE file

➢PE Header in private committed memory

13

Artifacts Reflective DLL

➢PE Header in private

committed memory

➢Executable and private

committed pages

14

Memory Artifacts Donut

➢Executable and private committed

memory

➢Donut can wipe the PE header

from memory

⚫ Header is in memory during

loading

⚫ Rest of PE structure is still in

memory. PESieve can find it [1]

[1] https://github.com/hasherezade/pe-sieve

15

Artifacts with File Backed
Memory

➢Try to first copy the PIC to

file backed memory

➢Donut / RDLL does not stay

where it was first copied to

➢Breaks concepts, like

Phantom DLL Hollowing [1]

(Forrest orr)

[1] https://www.forrest-orr.net/post/malicious-memory-artifacts-part-i-dll-

hollowing

16

Weakness of RDLL / Donut

➢ In memory PE loaders leave memory artifacts

➢Some artifacts can be removed after loading

⚫ During loading, automated products have a timeframe to work with

➢ In memory execution of .NET would mean constantly fighting AMSI

➢ If the whole tool was PIC, there would never be a PE to load …

17

PIC Your Malware!

PIC Your Malware!

➢C code can be compiled to PE files living fully in its .text segment [1]

➢Extracting the .text segment means obtaining PIC

⚫ No need to load it, just place it in memory and jump to it

➢Conditions

⚫ No relocations

⚫ No other segments in use than .text

⚫ Uses string stacking and avoids global / static variables

⚫ Must be able to parse Dlls for function pointers

➢ [1] https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

19

https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

Position Independent Code

20

Position Independent Code

➢The .text segment of such a program is fully position independent

➢Stays where it is copied to

➢Can be executed like classic shellcode

⚫ Needs a host process

➢Bonus: can be encoded with any shellcode encoder to break signatures!

⚫ As long as no parameters are passed and you expect the shellcode to return

properly

21

PIC in File Backed Memory

➢PIC stays where it is

copied to

➢No PE loading necessary

➢No new memory

allocated

➢No additional private

committed pages

➢No PE header

22

Nothing is Fully Undetectable

➢Also not in memory

➢PIC helps reducing memory artifact fingerprint

➢Abnormal allocation of file backed memory itself can still be fingerprinted [1]

⚫ Prone to false positives

➢Analysts will still catch malicious behavior of processes

➢Let us try to avoid suspicious Sysmon events using PIC!

[1] https://www.forrest-orr.net/post/masking-malicious-memory-artifacts-part-ii-insights-from-moneta

23

PIC Lsass Dumper

Lsass Dumper as PIC

➢ If a process opens Lsass with PROCESS_ALL_ACCESS or

PROCESS_VM_READ | PROCESS_QUERY_INFORMATION it is most likely

going to dump Lsass

➢ProcessAccess event every time a process uses OpenProcess()

➢Defenders definitely monitor this event related to Lsass

➢What if we never open Lsass?

25

Avoiding ProcessAccess

➢Some benign processes already have a handle to Lsass (HandleHolder)

➢PROCESS_QUERY_INFORMATION | PROCESS_DUP_HANDLE

➢Clone the existing handle using NtDuplicateObject

➢Handle can then be used in a malicious context

➢Sysmon only throws ProcessAccess on HandleHolder

➢Lsass usually has a handle to itself

⚫ Open Lsass with access mask not revealing your true intention

26

Avoiding ProcessAccess

➢MiniDumpWriteDump from DbgHelp internally opens multiple new handles

➢@Rookuu__ [1] demonstrated the usage of ReactOS MiniDumpWriteDump to

dump

➢However, also this function opens some new handles.

⚫ Replace EnumerateLoadedModulesW64()

➢Using ReactOS MiniDumpWriteDump + ReactOS

EnumerateLoadedModulesW64() to dump Lsass using a cloned handle does

not appear in Sysmon

[1] https://github.com/rookuu/BOFs/tree/main/MiniDumpWriteDump

27

Introducing HandleKatz

➢HandleKatz enumerates processes for a suitable handle to dump Lsass

➢Clones handle and uses ReactOS Code (MiniDumpWriteDump +

EnumerateLoadedModules) to dump the process without opening any new

handle to Lsass

➢Then writes an obfuscated dump to disk

➢Uses direct syscalls

➢Fully PIC

28

HandleKatz

29

Power of PIC

➢Feel free to upload on VT or drop it to disk

➢HandleKatz can be encoded with SGN [1]

➢Different encoded versions of PIC perform the exact same complex task

⚫ Yet, they look completely different

➢Depending on the encoder, encoded version cannot take arguments or do not

return properly

30

How to integrate HandleKatz

➢Comes with a header file for HandleKatz’s entry point

➢Simply cast pointer to the typedef of HandleKatz

➢Easy to integrate into your favorite C2

31

HandleKatz

➢Code + Compiled PIC can be found at

https://github.com/codewhitesec/HandleKatz

➢Other PIC examples: https://github.com/thefLink/C-To-Shellcode-Examples

➢How to build and protect PIC?

32

https://github.com/codewhitesec/HandleKatz
https://github.com/thefLink/C-To-Shellcode-Examples

Automating Creation and Protection

Source Files

➢2010 - @nickharbour - Writing Shellcode with a C Compiler

➢2013 - @mattifestation - Writing Optimized Windows Shellcode in C

➢2020 - @hasherezade - From a C project, through assembly, to shellcode

➢2021 - @passthehashbrwn - Dynamic payload compilation with mingw

34

https://nickharbour.wordpress.com/2010/07/01/writing-shellcode-with-a-c-compiler/
https://exploitmonday.blogspot.com/2013/08/writing-optimized-windows-shellcode-in-c.html
https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf
https://passthehashbrowns.github.io/dynamic-payload-generation-with-mingw

PE vs. PIC

Characteristic PE PIC

Structure Structured in sections with

different memory

characteristics, separation

of functions and data

All in one binary blob

Relocation Yes, will be calculated

through the loading

process of the OS

No relocations, everything

must be called relative to IP

Imports External function calls are

resolved through the

loading process of the OS

External functions can only

be called after they are

manually resolved

35

Position Independent Problems

➢ Imports – External functions can only be called after they are manually resolved

➢Strings – Have to be
{'s', 't', 'a', 'c', 'k', 's', 't', 'r', 'i', 'n', 'g', 's', 0}; [1]

Hashes are often used to hide imports but are not applicable for

other use cases

➢Global Data – Must be passed from one function to another

→ Especially a problem for our imports

[1] https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html

36

https://www.fireeye.com/blog/threat-research/2016/06/automatically-extracting-obfuscated-strings.html

Position Independent Problems
From MSDN to source code

+ Library Name

37

Position Independent Problems
From MSDN to source code

+ Library Name

python3 GenFunctionPointer.py https://docs.microsoft.com/en-
us/windows/win32/api/synchapi/nf-synchapi-sleep

→ typedef void(__stdcall *p_Sleep)(DWORD dwMilliseconds);

38

https://docs.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep

Position Independent Problems
Script generated code pattern

CHAR SleepStr[] = { 0 }; //str: Sleep

DeobfuscateString(SleepStr, SleepStr);

GetProcAddrManMap(Kernel32, SleepStr, &ProcAddress, Api);

Api->_Sleep = p_Sleep(ProcAddress);

39

Position Independent Problems
Script generated code pattern

CHAR SleepStr[] = { 0 }; //str: Sleep

DeobfuscateString(SleepStr, SleepStr);

GetProcAddrManMap(Kernel32, SleepStr, &ProcAddress, Api);

Api->_Sleep = p_Sleep(ProcAddress);

40

Position Independent Problems
Script generated code pattern

CHAR SleepStr[] = { 0 }; //str: Sleep

DeobfuscateString(SleepStr, SleepStr);

GetProcAddrManMap(Kernel32, SleepStr, &ProcAddress, Api);

Api->_Sleep = p_Sleep(ProcAddress);

41

Position Independent Problems
Script generated code pattern

CHAR SleepStr[] = { 0 }; //str: Sleep

DeobfuscateString(SleepStr, SleepStr);

GetProcAddrManMap(Kernel32, SleepStr, &ProcAddress, Api);

Api->_Sleep = p_Sleep(ProcAddress);

42

Position Independent Problems
Script generated code pattern

CHAR SleepStr[] = { 0 }; //str: Sleep

DeobfuscateString(SleepStr, SleepStr);

GetProcAddrManMap(Kernel32, SleepStr, &ProcAddress, Api);

Api->_Sleep = p_Sleep(ProcAddress);

+ Scripted the importing process of external functions

+ Write strings as they are

+ Make function pointers available everywhere → Api struct

43

Position Independent Problems
Script generated code pattern

Pre-build script obfuscate.py for string processing:

1) Find "INT ObfuscationKey" in source code and set random key value

2) Parse all files for string patterns, encode them with the obfuscation key and

paste encoded version

CHAR SleepStr[] = { 0 }; //str: Sleep
→ CHAR SleepStr[] = {18, 93, 21, 83, 66, -1}; //str: Sleep

44

Template Based Shellcode
Gimme Shelter

AVs have different triggers for in-memory scans, for example jumping to the

start of an executable region after…

➢ allocating it (and filling it with data) (RWX)

➢ changing its characteristics (RW → RX)

45

Template Based Shellcode
Gimme Shelter

AVs have different triggers for in-memory scans, for example jumping to the

start of an executable region after…

➢ allocating it (and filling it with data) (RWX)

➢ changing its characteristics (RW → RX)

Self-decrypting shellcode as a wrapper to protect payloads

1) Place self-decrypting shellcode in RWX memory region

2) Execute it → hides payload (long enough) from memory scanner

46

Template Based Shellcode
Self-decrypting shellcode pre-build script

47

Template Based Shellcode
Self-decrypting shellcode pre-build script

48

Template Based Shellcode
Self-decrypting shellcode Template

49

#define LOG 1
#define UK 0
#define DK 0
#define HK 0
#define PK 0

#if UK or DK or HK or PK or LOG [Active Preprocessor Block]
#endif

#if UK or DK or HK or PK [Inactive Preprocessor Block]
#endif

#if LOG [Active Preprocessor Block]
#endif

Template Based Shellcode
Self-decrypting shellcode Template

50

#define LOG 0
#define UK 1
#define DK 0
#define HK 0
#define PK 0

#if UK or DK or HK or PK or LOG [Active Preprocessor Block]
#endif

#if UK or DK or HK or PK [Active Preprocessor Block]
#endif

#if LOG [Inactive Preprocessor Block]
#endif

Template Based Shellcode
Self-decrypting shellcode Template

51

#define Parameter 1
#define _WIN64 1

#if Parameter
extern"C" VOID prologue(CHAR *Args);
extern"C" VOID mainAct(CHAR *Args);
#if _WIN64

extern"C" VOID AlignRSP(CHAR *Args);
#endif

#else
extern"C" VOID prologue();
extern"C" VOID mainAct();
#if _WIN64

extern"C" VOID AlignRSP();
#endif

#endif

Template Based Shellcode
Self-decrypting shellcode Template

52

#define Parameter 0
#define _WIN64 0

#if Parameter
extern"C" VOID prologue(CHAR *Args);
extern"C" VOID mainAct(CHAR *Args);
#if _WIN64

extern"C" VOID AlignRSP(CHAR *Args);
#endif

#else
extern"C" VOID prologue();
extern"C" VOID mainAct();
#if _WIN64

extern"C" VOID AlignRSP();
#endif

#endif

Template Based Shellcode
Self-decrypting shellcode post-build script

53

Template Based Shellcode
Self-decrypting shellcode post-build script

54

Template Based Shellcode
Suitable Memory

Suitable memory is needed to run self-decrypting shellcode!

And here we go again: in-memory artifacts 

Is this really a problem?

55

Template Based Shellcode
Suitable Memory

Suitable memory is needed to run self-decrypting shellcode!

And here we go again: in-memory artifacts 

Is this really a problem?

Short answer: No! ☺

Long answer: Depends - you must know what you’re doing!

→ PIC itself in RWX memory is hard to identify as malicious

56

Template Based Shellcode
Gimme Suitable Memory

Masking Malicious Memory Artifacts: Part I – III

https://www.forrest-orr.net/blog

➢VirtualAlloc

➢VirtualProtect

➢Create PE with RWX section

➢Load DLL with RWX section

➢<Something> Hollowing

➢You name it

➢…

57

https://www.forrest-orr.net/blog

Template Based Shellcode
Express Yourself – Just Say Yes!

Run shellcode directly

➢Link into text section of loader PE

➢Execute without prior allocation

➢Not feasible for self-modifying code

58

Template Based Shellcode
Express Yourself – Just Say Yes!

Run shellcode directly

➢Link into text section of loader PE

➢Execute without prior allocation

➢Not feasible for self-modifying code

Protection?

➢Obfuscation by replacing / inserting assembly instructions

C → ASM → Obfuscation / Mutation → ASM → Binary [1]

➢Situational awareness by conditional jumps

[1] https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

59

https://vxug.fakedoma.in/papers/VXUG/Exclusive/FromaCprojectthroughassemblytoshellcodeHasherezade.pdf

Template Based Shellcode
Loader PE Templates

MinGW based approaches

https://github.com/phra/PEzor

https://github.com/optiv/ScareCrow

➢One MSVS solution, multiple configurations

➢Generic loader PE templates, mostly DLLs

➢Various exports

➢Various functionality (different hijacks / drop)

➢Shellcode payload as header

➢Some resource files for fun

60

https://github.com/phra/PEzor
https://github.com/optiv/ScareCrow

Git Together

61

Git Together
Why Gitlab CI/CD

➢Modularity

➢Flexibility

➢Parameterization

➢Ubiquitous

62

Git Together
Gitlab CI/CD Pipelines

➢Logic in YAML files (and Python in our case)

➢Jobs define what to do

For example, jobs that compile or process (obfuscate)

➢Stages define when to run the jobs

For example, stages run different pre- or post-build evasion jobs after each

other

63

Git Together
.gitlab-ci.yml Example Handlekatz

variables:
CW_PROJECT: BruCon
CW_PARAMETER: --pid 7688
CW_EVASION: Crypto LoaderGen

CW_CRYPTO_KEY_USER: KevinSmith
CW_CRYPTO_SANDBOX: 1
CW_CRYPTO_ITERATIONS: 100

CW_LOADER_TEMPLATE: EXE
CW_LOADER_CONSOLE: 1

64

Git Together
Build Configuration / Preparation

65

Git Together
Build Configuration / Preparation

66

Git Together
Build Configuration / Preparation

67

Git Together
Pipeline Example Handlekatz

68

Git Together
Pipeline Example Sharphound

69

Git Together
C2 Integration

Great talk about evasion CI/CD

Dominic Chell - Offensive Development: Post Exploitation Tradecraft in an EDR

World

➢Agents: Trigger pipeline process through CobaltStrike UI and download

generated loader to your client

➢Tools / Payloads / Red Teaming as Code: Trigger pipeline process through the

CobaltStrike UI and upload artifact to a running Agent

70

https://www.youtube.com/watch?v=GHmOJhpMw_o

Demo
C2 Integration

71

Thank you for your attention!

Questions?

Check out on Twitter:

@danshaqfu @niph_

@theflinkk @b00n10

