
Hijacking client software for fuzz and profit

pointer

Alternative titles I considered

 "I just met you and this is crazy but here's my
pointer so jump to it maybe" (too long)

 "All your pointers are belong to…" (meh)

 "How I fuzzed your mother" (FAIL)

 Other names that could lead to discussion

overview

 Introduction.

 Fuzzing 101. *yawn*

 The need for a different approach.

 Abusing the client.

 A possible implementation. Boyka.

 EXPERIMENT.

 Conclusion.

$ whoami

True story, bro!

$ whoami

What this is about

 Interesting approach to software testing

 Touching things you are not supposed to

 Breaking stuff (if you're lucky!)

 Multiple references to pop culture

 and chocolate!

Look for the
ChocoQuiz Icon

What this is NOT about

 "Click & Hack" tool

 There is juicy code though

 Although I find this pretty AWESOME

 You may feel different about it

 I did this in my spare time

 You still have time to leave the room :)

 Remember the chocolate

DISCLAIMER

For educational purposes

ONLY...

Fuzzing 101

Fuzzing is like violence:
if it doesn‘t solve your problems,
you are not using enough of it.

stolen from the nokogiri guys

BRUTE FORCE

Monster configuration

ftp.py - protocol

ftp_session.py

Crash! boom! bang! haha!

Precise Crash inf rmation

There's always a BUT

That‘s all very nice.

But what if I don‘t

know the protocol?

There is NO
documentation at all.

:((((((

I CAN ALWAYS TRY DUMB FUZZING!

Think about checksums...

Packet

Data Checksum

Checksum = SHA1(Data)
SHA1: 160 bits
P(right) = 1/2160 ≈ 1/1048

1048 = 1k∙1T∙1T∙1T∙1T∙1T

 Dumb Fuzzing…

Is everything lost ?

The need for
a *different*
approach

In
 a

 n
u
ts

h
e
ll

...

Simple arguments

It gets exciting

Detours
= userland hooking
= amazing stuff

= dynamic binary
 instrumentation

= AWESOME stuff !!!

Microsoft Detours

 Library for intercepting arbitrary Win32 binary functions.

 Interception code is applied dynamically at runtime.
 Replaces the first few instructions of the target function
 with an unconditional jump to the detour function.

 Replace or extend the target function.

INTEL Pin

 Executable instrumented before running

– Delay noticeable

– Finds new code at runtime !!!

– Packed/protected code is not a problem

– Nor is Antidebugging :)

What can possibly go wrong?

Developer:

“Can‘t touch this!“

What can possibly go wrong?

“Hmm… Can‘t touch this?“

What can possibly go wrong?

“Actually, I can!“

Long story short...

Plumbing time

BoykaConsole

 BoykaMonitor

Overview (from a million miles away)

Server
software

Debugger

Communications
module

Client software

f1
f2

f3

f4

f5
f6

Protocol

Communications
module

Event info.

Feedback

Debugger

Server Client

Overview (from a thousand miles away)

Client software

f1
f2

f3

f4

f5
f6

Restore state
Save state

hooking

(*)

(*) This step works
like so... so... right now

(…)

(…)

send()

... something wrong may happen

The Challenge

 I can "inject" some data into the server

 By hijacking client execution at certain points

 …

 … aha…

 Which. Points. Do. I. Use. ?!?!?!?

Anyone getting dizzy?

M*LF & PIN Tracer

Some cool features

 Mark dangerous functions
 Find immediate compares
 Mark switches
 Show paths between functions
 Find File IO
 Find Network IO
 Find Allocations
 Find dangerous „size params“

 Create IDA (connection) graphs

 Create „custom viewers“

 etc.

IDASCOPE

http://pnx-tf.blogspot.com/

http://pnx-tf.blogspot.de/
http://pnx-tf.blogspot.de/
http://pnx-tf.blogspot.de/
http://pnx-tf.blogspot.de/

Differential debugging

 Hook every function -> log hits.

 1st run. Exercise as many functionality as possible.

 2nd run. Focus on the interesting feature.

 Compare both -> filter out.

Function_1
GUI_stuff
Windows_stuff
Function_2
Thread_sync
Function_3
[…]

Function_1
GUI_stuff
Windows_stuff
Login_stuff
Thread_sync
Encryption_stuff
[…]

Differential debugging

 Hook every function -> log hits.

 1st run. Exercise as many functionality as possible.

 2nd run. Focus on the interesting feature.

 Compare both -> filter out.

Function_1
GUI_stuff
Windows_stuff
Function_2
Thread_sync
Function_3
[…]

Function_1
GUI_stuff
Windows_stuff
Login_stuff
Thread_sync
Encryption_stuff
[…]

Login_stuff

Encryption_stuff
[…]

BUILD your weapon

Epic ass kicking

WAKE UP!
You're gonna miss
the good stuff!!!

Finding possible weak spots

Finding possible weak spots

CHEATING...

 Calculate login length

 Append the length (ASCII) to the login string.

 Append a “custom“ string

 Encrypts everything

Server: Length value used to malloc() & strcpy()

Where to go from here

 Better static / dynamic analysis

 Automatization

 Heuristic based

 Save / restore snapshot

 Full emulation (Thx @pleed_ !)

 Qemu-dbi?

You can lulz at my code at:

https://github.com/carlosgprado/Boyka

@m0n0sapiens

carlos.g.prado@gmail.com

Everything is online

