Mathy Vanhoef

New Flaws in WPA-TKIP

@vanhoefm

Brucon 2012

Why listen to me?

universiten Zll ERNST & YOUNG
>>h9 S S e 1_ Quality In Everything We Do

Why listen to me?

universiten Zll ERNST & YOUNG
>>h9 S S e 1_ Quality In Everything We Do

(vy Gandanur

Why listen to me?

universite El| ERNST & YOUNG
>>h9 SSE t Quality In Everything We Do

(5 Gandanur

if (frame.isAgenda)
print_callstack();

exe0 The WPA-TKIP protocol
exe4 Denial of Service

oxe8 Demo

oxec Beck & Tews attack
ex1e Fragmentation attack
ex14 Performing a port scan

The WPA-TKIP Protocol

We will cover:
Connecting
Sending & receiving packets
Quality of Service (QoS) extension

Design Constraints:
Must run on legacy hardware
Uses (hardware) WEP encapsulation

4-way handshake

Defined by EAPOL and results in a session key

What you normally capture & crack

Protocol Length Infeo
802.11 287 Beacon frame, SN=23

- _ ~ v x root@bt: ~/wpatkip/handshake
802.11 287 Beacon -Fr‘ame’ SN=23 File Edit View Terminal :elp ’
802.11 28 Acknowledgement, FI KEY FOUND! [testpass]
EAPOL 175 Key (msg 2/4)
EAPOL 175 Key (msg 2/4)
EAPOL 175 Key (msg 2/4) Master Key 2B 21 CA AA EE BE 2C

2D C5 A4 D6 66 91 A3

EAPOL 175 Key (msg 2/4)
802.11 28 Acknowledgement, F1 Transient Key : A4 7D 70 BO F2 CO C1
EAPOL 177 Key CF CE 163 OA 42 8E 51
B02.11 28 acknowledgement, F1 2A FC DB 7E 96 1D 9F
802.11 28 Acknowledgement, F1 EAPOL HMAC . B5 A6 25 E0 15 9C 50
802.11 203 Qo5 Data, SWN=3, FN= :~/wpatkip/handshake# I
802.11 28 Acknowledgement, F1

802.11 171 QoS5 Data, SN=2, FN=

4-way handshake

Result of handshake is 512 bit session key

Renewed after rekeying timeout (1 hour)

4-way handshake

Result of handshake is 512 bit session key

Renewed after rekeying timeout (1 hour)

DataEncr key: used to encrypt packets

4-way handshake

Result of handshake is 512 bit session key

Renewed after rekeying timeout (1 hour)

DataEncr key: used to encrypt packets
MIC keys (Message Integrity Code):
Verify integrity of data. But why two?

Why two MIC keys?

WPA-TKIP designed for old hardware
Couldn’t use strong integrity checks (CCMP)

New algorithm called Michael was created
Weakness: plaintext + MIC reveals MIC key

To improve security two MIC keys are used
MICa for AP to client communication
MIC2 for client to AP communication

Sending Packets

Calculate MIC to assure integrity

Sending Packets

Calculate MIC to assure integrity
WEP Encapsulation:
Calculate CRC

Sending Packets

Calculate MIC to assure integrity
WEP Encapsulation:

Calculate CRC
Encrypt the packet using RC4

Sending Packets

Encrypted

Calculate MIC to assure integrity
WEP Encapsulation:

Calculate CRC
Encrypt the packet using RC4

Add replay counter (TSC) to avoid replays

Sending Packets

Encrypted

Calculate MIC to assure integrity
WEP Encapsulation:

Calculate CRC
Encrypt the packet using RC4

Add replay counter (TSC) to avoid replays

Receiving Packets

Encrypted

WEP decapsulation:
Verify TSC to prevent replays

Receiving Packets

Encrypted

WEP decapsulation:
Verify TSC to prevent replays
Decrypt packet using RC4

Receiving Packets

WEP decapsulation:
Verify TSC to prevent replays

Decrypt packet using RC4
Verify CRC

Receiving Packets

WEP decapsulation:
Verify TSC to prevent replays
Decrypt packet using RC4
Verify CRC

Verify MIC to assure authenticity

Receiving Packets

WEP decapsulation:
Verify TSC to prevent replays
Decrypt packet using RC4
Verify CRC

Verify MIC to assure authenticity

MIC Defense Mechanism

Replay counter & CRC are good, but MIC not
Transmission error unlikely
Network may be under attack!

MIC Defense Mechanism

Replay counter & CRC are good, but MIC not
Transmission error unlikely
Network may be under attack!

Defense mechanism on MIC failure:
Client sends MIC failure report to AP
AP silently logs failure
Two failures in 1 min: network down for 1 min

Quality of Service (QoS)

Defines several QoS channels
Implemented by new field in 802.11 header

Encrypted

Quality of Service (QoS)

Defines several QoS channels
Implemented by new field in 802.11 header

Encrypted

Quality of Service (QoS)

Defines several QoS channels
Implemented by new field in 802.11 header

<€ > <€ >

unencrypted Encrypted

Quality of Service (QoS)

Defines several QoS channels
Implemented by new field in 802.11 header

<€ > <€ >

unencrypted Encrypted

Individual replay counter (TSC) per channel
Used to pass replay counter check of receiver!

For Example:

0: Best Effort 4000
1: Background 0
2:Video 0
3: Voice o)

Support for up to 8 channels

But WiFi certification only requires 4

Integrity check and encryption

MIC = Michael(MAC dest,
MAC source,
MIC key,

data)
Rcgkey = MixKey(MAC transmitter,

key,
TSC)

Wait a minute...

The previous slides contain all the info to find
a denial of service attack, any ideas? ©

Thinkingjcat

e
&i'

i ‘::::z‘
- o B -k
3
...1S thinking
o ~ ed

Wait a minute...

The previous slides contain all the info to find
a denial of service attack, any ideas?

Key observations:
Individual replay counter per priority
Priority influences MIC but not encryption key
Two MIC failures: network down

Wait a minute...

The previous slides contain all the info to find
a denial of service attack, any ideas?

Key observations:

Individual replay counter per priority

Priority influences MIC but not encryption key
Two MIC failures: network down

What happens when the priority is changed?

Changing the priority

Capture packet, change priority, replay

On Reception:
Verify replay counter
Decrypt packet using RCy4

Verify CRC (leftover from WEP)
Verify MIC to assure authenticity

Changing the priority

Capture packet, change priority, replay

On Reception:
Verify replay counter OK
Decrypt packet using RCy4

Verify CRC (leftover from WEP)
Verify MIC to assure authenticity

Changing the priority

Capture packet, change priority, replay

On Reception:
Verify replay counter OK
Decrypt packet using RCy4 OK

Verify CRC (leftover from WEP)
Verify MIC to assure authenticity

Changing the priority

Capture packet, change priority, replay

On Reception:

Verify replay counter OK
Decrypt packet using RCy4 OK
Verify CRC (leftover from WEP) OK

Verify MIC to assure authenticity

Changing the priority

Capture packet, change priority, replay

On Reception:

Verify replay counter OK
Decrypt packet using RCy4 OK
Verify CRC (leftover from WEP) OK

Verify MIC to assure authenticity

Denial of Service Attack

Capture packet, change priority, replay

On Reception:

Verify replay counter OK
Decrypt packet using RCy4 OK
Verify CRC (leftover from WEP) OK

Verify MIC to assure authenticity
—> Do this twice: Denial of Service

If QoS is disabled?

Disadvantage: attack fails if QoS is disabled

Solution: Capture packet, ,
change priority, replay

If QoS is disabled?

Disadvantage: attack fails if QoS is disabled

Solution: Capture packet, ,
change priority, replay

On Reception:
Doesn’t check whether QoS is actually used

If QoS is disabled?

Disadvantage: attack fails if QoS is disabled

Solution: Capture packet, ,
change priority, replay

On Reception:
Doesn’t check whether QoS is actually used
Again bypass replay counter check
MIC still dependent on priority

If QoS is disabled?

Disadvantage: attack fails if QoS is disabled

Solution: Capture packet, ,
change priority, replay

On Reception:
Doesn’t check whether QoS is actually used
Again bypass replay counter check
MIC still dependent on priority

[Cryptanalysis for RC4 and breaking WEP/WPA-TKIP]

Time for action: Demo!

Attacker: VMWare VS. Victim: Windows

Comparison

Example: network with 20 connected clients

Deauthentication attack:

Must continuously sends packets

Say 10 deauths per client per second

(10 * 60) * 20 = 12 000 frames per minute
New attack

2 frames per minute

if (frame.isAgenda)
print_callstack();

oxeC Beck & Tews attack
ex1e Fragmentation attack
ex14 Performing a port scan

Beck & Tews Attack

First known attack on TKIP, requires QoS
Decrypts ARP reply sent from AP to client

Beck & Tews Attack

First known attack on TKIP, requires QoS
Decrypts ARP reply sent from AP to client

Simplified: each byte is decrypted by sending

a modified packet for all 256 possible values:
Wrong guess: CRC invalid
Correct guess: CRC valid but MIC failure

Beck & Tews Attack

First known attack on TKIP, requires QoS
Decrypts ARP reply sent from AP to client

Simplified: each byte is decrypted by sending

a modified packet for all 256 possible values:
Wrong guess: CRC invalid
Correct guess: CRC valid but MIC failure

Beck & Tews Attack

~ v X root@bt: ~/wpatkip/rt2850linux
File Edit View Terminal Help
Every 1.0s: dmesg tail -n 8 Sat Sep 8 18:35:52 20127_

4.089576] Ralink RT2870: Data CRC Error!
4.190307] Ralink RT2870: Data CRC Error!
4.291956] Ralink RT2870: Data CRC Error!
4.394447] Ralink RT2870: Data CRC Error!
.496097] Ralink RT2870: Data CRC Error!
.597956] Ralink RT2870: Data CRC Error!
.700834] Ralink RT2870: Data CRC Error!
.814220] Ralink RT2870: MIC Error! Sending MIC failure report.

Takes 12 minutes to execute

Limited impact: injection of 3-7 small packets

Injecting more packets?

What is needed to inject packets:
MIC key

Result of Beck & Tews attack

Injecting more packets?

What is needed to inject packets:
MIC key

Result of Beck & Tews attack
Unused replay counter

Inject packet on unused QoS channel

Injecting more packets?

What is needed to inject packets:
MIC key

Result of Beck & Tews attack
Unused replay counter

Inject packet on unused QoS channel
Keystream corresponding to replay counter

Beck & Tews results in only one keystream...
First need to know RC4!

Background: RC4 algorithm

Stream cipher
XOR-based

This means:

—> Predicting the plaintext gives the keystream

Predicting packets

Simplified:
All data packets start with LLC header
Different for APR, IP and EAPOL packets

Detect ARP & EAPOL based on length
Everything else: IP

Predicting packets

Simplified:
All data packets start with LLC header
Different for APR, IP and EAPOL packets
Detect ARP & EAPOL based on length
Everything else: IP

Practice: almost no incorrect guesses!
Gives us 12 bytes keystream for each packet

Using short keystreams

But is 12 bytes enough to send a packet?
No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them...

Using short keystreams

But is 12 bytes enough to send a packet?
No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them...
...well, title of this section is fragmentation

Using short keystreams

But is 12 bytes enough to send a packet?
No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them...
...well, title of this section is fragmentation

Using 802.11 fragmentation we can combine
16 keystreams to send one large packet

802.11 fragmentation

802.11 fragmentation

MIC calculated over complete packet

802.11 fragmentation

MIC calculated over complete packet

802.11 fragmentation

MIC calculated over complete packet
Each fragment has CRC and different TSC

802.11 fragmentation

MIC calculated over complete packet
Each fragment has CRC and different TSC
12 bytes/keystream: inject 120 bytes of data

Fragmentation Attack

Beck & Tews attack: MIC key AP to client
Predict packets & get keystreams

Combine short keystreams by fragmentation
Send over unused QoS channel

Fragmentation Attack

Beck & Tews attack: MIC key AP to client
Predict packets & get keystreams

Combine short keystreams by fragmentation
Send over unused QoS channel

What can we do with this?
ARP/DNS Poisoning
Sending TCP SYN packets: port scan!

Port scan on TKIP client

A few notes:
Scan 5oo most popular ports
Detect SYN/ACK based on length
Avoid multiple SYN/ACK's: send RST

Port scan of internal client:
Normally not possible
We are bypassing the network firewall / NAT!

Demo: port scan

Random remark:

Building packets sucks... ®

int z;

if ((h80211[0] & ©x0C) != 8)

return 0; //must be a data packet
if ((h80211[0] & ©x70) '= 0)

return 0;
if ((h80211[1] & ©x40) == 0)

return 0;

// Get the header length

z = ((h80211[1] & 3) !'= 3) ? 24 . 30;

if ((h80211[0] & Ox80) == 0x80) /* QoS */
Z += 2

// Must be a TKIP/CCMP frame
if ((h80211l[z + 3] & 0x20) == 0)
return 0;

targetPortId: 1
tlvType: Cancel unicast transmission (6)
lTengthField: 2

- [malformed Packet: PTP]

= [Expert Info (Error/malformed): malformed
[Message: Malformed Packet (Exception o
[Severity level: Error]
[Group: Malformed]

... until wireshark crashes ...

| ~ v x root@bt: ~
File Edit View Terminal Help

~# wireshark &

:~# *** puffer overflow detected ***: wireshark terminated
Backtrace:
/1lib/tls/1686/cmov/libc.so0.6(fortify-fail+0x50) [0xb4885390]
/1ib/tls/1686/cmov/libc.so.6(+0xel2ca) [0xb48842ca]l
/usr/local/lib/libwireshark.so.2 (+0x605980.)0xb561a980 |
/usr/local/lib/libwireshark.so.2(+0x9a33f9) [0xb59h83T9]
/usr/local/lib/libwireshark.so.2(+0x9afefb){0xb59cd4efb]
|/usr/local/lib/libwireshark.so.2(+0x9b5010) [0xb59ca0l@]
/usr/local/lib/libwireshark.so.2(+0x5ba986) [0xb55cf986]
call dissector+0x3a)[0xb55d03ea]
+0x9b6Th0) [0xb59cbThO]

+0x5ba986) [Oxb55¢cT986]

|/usr/local/lib/libwireshark.so.
/usr/local/lib/1libwireshark.so.
{/usr/local/lib/libwireshark.so.

(
2 (
2 (
2 (

{/usr/local/lib/libwireshark.so.2(+0x5bble9) [0xb55d01e9]

2 (
2 (
2 (

... and it’s reproducible

tcpdump -1 mon@ -w crash.pcap

£ Wireshark I&

Wireshark has stopped working

Windows is checking for a selution to the problem...

[Cancel]

Can we pass the firewall?

Target will send outgoing SYN/ACK
Will this go through the firewall/NAT?
Normally not...

Scarlet VDSL Box No
WAG320N No
OpenBSD/PF No
DD-WRT When SPl is disabled

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

b >

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

b >

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

b >

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

ot
g{ B ()
\/_/‘/

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

| H (ﬁﬂ/\/\
&\/_/‘/

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?
Bidirectional traffic is possible

| H (ﬁﬂ/\/\
&\/_/‘/

Access Point

- |8

Client Attacker

If we can pass NAT

Realistic in practice?

| H (ﬁﬂ/\/\
&\/_/‘/

Access Point

- |8

Client Attacker

Worst case scenario

Client running SSH server with weak password
Bypass firewall using fragmentation attack
Bidirectional communication is possible
Connect to SSH server as root

Worst case scenario

Client running SSH server with weak password
Bypass firewall using fragmentation attack
Bidirectional communication is possible
Connect to SSH server as root
Dump the network password!

Worst case scenario

Client running SSH server with weak password
Bypass firewall using fragmentation attack
Bidirectional communication is possible
Connect to SSH server as root
Dump the network password!

Note: not been tested

Comparison

Beck & Tews:
Inject 3-7 packets of 28 bytes

Fragmentation:
Inject arbitrary amount of packets

With a size up to 120 bytes

Additionally, exploit IP fragmentation to
transmit IP packets of arbitrary size

Fun with wireless adapters

Belkin F5D7053:
Ignores TSC... you can simply replay a packet

When connected to a protected network, it
still accepts unencrypted packets

Fun with wireless adapters

Belkin F5D7053:
Ignores TSC... you can simply replay a packet

When connected to a protected network, it
still accepts unencrypted packets

Fun with wireless adapters

Belkin F5D7053:
Ignores TSC... you can simply replay a packet

When connected to a protected network, it
still accepts unencrypted packets

BELKIN

Conclusion

Very efficient Denial of Service
Use fragmentation to launch actual attacks

Forced to use WPA-TKIP?

Use short rekeying timeout (2 mins)
Disable QoS and update drivers (if possible)

Update to WPA2-AES
Specifically set encryption to AES only

Questions?

@vanhoefm

Brucon 2012

