
Mathy Vanhoef

@vanhoefm

Brucon 2012

0x00 The WPA-TKIP protocol

0x04 Denial of Service

0x08 Demo

0x0C Beck & Tews attack

0x10 Fragmentation attack

0x14 Performing a port scan

We will cover:

 Connecting

 Sending & receiving packets

 Quality of Service (QoS) extension

Design Constraints:

 Must run on legacy hardware

 Uses (hardware) WEP encapsulation

 Defined by EAPOL and results in a session key

 What you normally capture & crack

 Result of handshake is 512 bit session key

 Renewed after rekeying timeout (1 hour)

EAPOL protection DataEncr MIC1 MIC2

 DataEncr key: used to encrypt packets

 Result of handshake is 512 bit session key

 Renewed after rekeying timeout (1 hour)

EAPOL protection DataEncr MIC1 MIC2

 DataEncr key: used to encrypt packets

 MIC keys (Message Integrity Code):

 Verify integrity of data. But why two?

 Result of handshake is 512 bit session key

 Renewed after rekeying timeout (1 hour)

  WPA-TKIP designed for old hardware

 Couldn’t use strong integrity checks (CCMP)

 New algorithm called Michael was created

 Weakness: plaintext + MIC reveals MIC key

 To improve security two MIC keys are used

 MIC1 for AP to client communication

 MIC2 for client to AP communication

 Calculate MIC to assure integrity

TSC MIC Data CRC

Encrypted

 Calculate MIC to assure integrity

 WEP Encapsulation:

 Calculate CRC

TSC MIC Data CRC

Encrypted

 Calculate MIC to assure integrity

 WEP Encapsulation:

 Calculate CRC

 Encrypt the packet using RC4

TSC MIC Data CRC

Encrypted

 Calculate MIC to assure integrity

 WEP Encapsulation:

 Calculate CRC

 Encrypt the packet using RC4

 Add replay counter (TSC) to avoid replays

TSC MIC Data CRC

Encrypted

 Calculate MIC to assure integrity

 WEP Encapsulation:

 Calculate CRC

 Encrypt the packet using RC4

 Add replay counter (TSC) to avoid replays

TSC MIC Data CRC

Encrypted

 WEP decapsulation:

 Verify TSC to prevent replays

TSC MIC Data CRC

Encrypted

 WEP decapsulation:

 Verify TSC to prevent replays

 Decrypt packet using RC4

TSC MIC Data CRC

Encrypted

 WEP decapsulation:

 Verify TSC to prevent replays

 Decrypt packet using RC4

 Verify CRC

TSC MIC Data CRC

Encrypted

 WEP decapsulation:

 Verify TSC to prevent replays

 Decrypt packet using RC4

 Verify CRC

 Verify MIC to assure authenticity

TSC MIC Data CRC

Encrypted

 WEP decapsulation:

 Verify TSC to prevent replays

 Decrypt packet using RC4

 Verify CRC

 Verify MIC to assure authenticity

TSC MIC Data CRC

Encrypted

 Replay counter & CRC are good, but MIC not

 Transmission error unlikely

 Network may be under attack!

 Replay counter & CRC are good, but MIC not

 Transmission error unlikely

 Network may be under attack!

Defense mechanism on MIC failure:

 Client sends MIC failure report to AP

 AP silently logs failure

 Two failures in 1 min: network down for 1 min

 Defines several QoS channels

 Implemented by new field in 802.11 header

TSC MIC Data CRC

Encrypted

QoS

 Defines several QoS channels

 Implemented by new field in 802.11 header

TSC MIC Data CRC

Encrypted

QoS

 Defines several QoS channels

 Implemented by new field in 802.11 header

TSC MIC Data CRC

Encrypted

QoS

unencrypted

 Defines several QoS channels

 Implemented by new field in 802.11 header

TSC MIC Data CRC

Encrypted

QoS

unencrypted

 Individual replay counter (TSC) per channel

 Used to pass replay counter check of receiver!

 Support for up to 8 channels

 But WiFi certification only requires 4

Channel TSC

0: Best Effort 4000

1: Background 0

2: Video 0

3: Voice 0

 MIC = Michael(MAC dest,
 MAC source,
 MIC key,
 priority,
 data)

 Rc4key = MixKey(MAC transmitter,
 key,
 TSC)

 The previous slides contain all the info to find
a denial of service attack, any ideas? 

 The previous slides contain all the info to find
a denial of service attack, any ideas?

 Key observations:

 Individual replay counter per priority

 Priority influences MIC but not encryption key

 Two MIC failures: network down

 The previous slides contain all the info to find
a denial of service attack, any ideas?

 Key observations:

 Individual replay counter per priority

 Priority influences MIC but not encryption key

 Two MIC failures: network down

 What happens when the priority is changed?

 Capture packet, change priority, replay

On Reception :

 Verify replay counter

 Decrypt packet using RC4

 Verify CRC (leftover from WEP)

 Verify MIC to assure authenticity

 Capture packet, change priority, replay

On Reception :

 Verify replay counter OK

 Decrypt packet using RC4

 Verify CRC (leftover from WEP)

 Verify MIC to assure authenticity

 Capture packet, change priority, replay

On Reception :

 Verify replay counter OK

 Decrypt packet using RC4 OK

 Verify CRC (leftover from WEP)

 Verify MIC to assure authenticity

 Capture packet, change priority, replay

On Reception :

 Verify replay counter OK

 Decrypt packet using RC4 OK

 Verify CRC (leftover from WEP) OK

 Verify MIC to assure authenticity

 Capture packet, change priority, replay

On Reception :

 Verify replay counter OK

 Decrypt packet using RC4 OK

 Verify CRC (leftover from WEP) OK

 Verify MIC to assure authenticity FAIL

 Capture packet, change priority, replay

On Reception :

 Verify replay counter OK

 Decrypt packet using RC4 OK

 Verify CRC (leftover from WEP) OK

 Verify MIC to assure authenticity FAIL

 Do this twice: Denial of Service

 Disadvantage: attack fails if QoS is disabled

 Solution: Capture packet, add QoS header,
change priority, replay

 Disadvantage: attack fails if QoS is disabled

 Solution: Capture packet, add QoS header,
change priority, replay

On Reception:

 Doesn’t check whether QoS is actually used

 Disadvantage: attack fails if QoS is disabled

 Solution: Capture packet, add QoS header,
change priority, replay

On Reception:

 Doesn’t check whether QoS is actually used

 Again bypass replay counter check

 MIC still dependent on priority

 Disadvantage: attack fails if QoS is disabled

 Solution: Capture packet, add QoS header,
change priority, replay

On Reception:

 Doesn’t check whether QoS is actually used

 Again bypass replay counter check

 MIC still dependent on priority

[Cryptanalysis for RC4 and breaking WEP/WPA-TKIP]

Attacker: VMWare vs. Victim: Windows

 Example: network with 20 connected clients

 Deauthentication attack:

 Must continuously sends packets

 Say 10 deauths per client per second

 (10 * 60) * 20 = 12 000 frames per minute

 New attack

 2 frames per minute

0x00 The WPA-TKIP protocol

0x04 Denial of Service

0x08 Demo

0x0C Beck & Tews attack

0x10 Fragmentation attack

0x14 Performing a port scan

 First known attack on TKIP, requires QoS

 Decrypts ARP reply sent from AP to client

 First known attack on TKIP, requires QoS

 Decrypts ARP reply sent from AP to client

 Simplified: each byte is decrypted by sending
a modified packet for all 256 possible values:

 Wrong guess: CRC invalid

 Correct guess: CRC valid but MIC failure

 First known attack on TKIP, requires QoS

 Decrypts ARP reply sent from AP to client

 Simplified: each byte is decrypted by sending
a modified packet for all 256 possible values:

 Wrong guess: CRC invalid

 Correct guess: CRC valid but MIC failure

 MIC key for AP to client

 Takes 12 minutes to execute

 Limited impact: injection of 3-7 small packets

What is needed to inject packets:
 MIC key

 Result of Beck & Tews attack

What is needed to inject packets:
 MIC key

 Result of Beck & Tews attack

 Unused replay counter

 Inject packet on unused QoS channel

What is needed to inject packets:
 MIC key

 Result of Beck & Tews attack

 Unused replay counter

 Inject packet on unused QoS channel

 Keystream corresponding to replay counter

 Beck & Tews results in only one keystream…

 How can we get more? First need to know RC4!

 Stream cipher
 XOR-based

This means: Ciphertext

Plaintext

Keystream

 Predicting the plaintext gives the keystream

Simplified:

 All data packets start with LLC header

 Different for APR, IP and EAPOL packets

 Detect ARP & EAPOL based on length

 Everything else: IP

Simplified:

 All data packets start with LLC header

 Different for APR, IP and EAPOL packets

 Detect ARP & EAPOL based on length

 Everything else: IP

 Practice: almost no incorrect guesses!

 Gives us 12 bytes keystream for each packet

 But is 12 bytes enough to send a packet?
 No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them…

 But is 12 bytes enough to send a packet?
 No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them…
…well, title of this section is fragmentation

 But is 12 bytes enough to send a packet?
 No, MIC & CRC alone are 12 bytes.

If only we could somehow combine them…
…well, title of this section is fragmentation

 Using 802.11 fragmentation we can combine

16 keystreams to send one large packet

Data

 MIC calculated over complete packet

Data MIC

 MIC calculated over complete packet

Data MIC

Data1 Data16 MIC Data2

 MIC calculated over complete packet

 Each fragment has CRC and different TSC

TSC1 Data1 TSC16 Data16 CRC16 MIC CRC1

Data MIC

Data1 Data16 MIC Data2

 MIC calculated over complete packet

 Each fragment has CRC and different TSC

 12 bytes/keystream: inject 120 bytes of data

TSC1 Data1 TSC16 Data16 CRC16 MIC CRC1

Data MIC

Data1 Data16 MIC Data2

 Beck & Tews attack: MIC key AP to client

 Predict packets & get keystreams

 Combine short keystreams by fragmentation

 Send over unused QoS channel

 Beck & Tews attack: MIC key AP to client

 Predict packets & get keystreams

 Combine short keystreams by fragmentation

 Send over unused QoS channel

What can we do with this?

 ARP/DNS Poisoning

 Sending TCP SYN packets: port scan!

A few notes:

 Scan 500 most popular ports

 Detect SYN/ACK based on length

 Avoid multiple SYN/ACK’s: send RST

Port scan of internal client:

 Normally not possible

 We are bypassing the network firewall / NAT!

Building packets sucks… 

tcpdump -i mon0 -w crash.pcap

 Target will send outgoing SYN/ACK

 Will this go through the firewall/NAT?

 Normally not…

Device SYN/ACK forwarded?

Scarlet VDSL Box No

WAG320N No

OpenBSD/PF No

DD-WRT When SPI is disabled

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

Internet

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

Internet

 Realistic in practice?

 Bidirectional traffic is possible

Access Point

Attacker Client

Internet

 Realistic in practice?

 Can connect to open ports

Access Point

Attacker Client

Internet

 Client running SSH server with weak password

 Bypass firewall using fragmentation attack

 Bidirectional communication is possible

 Connect to SSH server as root

 Client running SSH server with weak password

 Bypass firewall using fragmentation attack

 Bidirectional communication is possible

 Connect to SSH server as root

 Dump the network password!

 Client running SSH server with weak password

 Bypass firewall using fragmentation attack

 Bidirectional communication is possible

 Connect to SSH server as root

 Dump the network password!

Note: not been tested

Beck & Tews:

 Inject 3-7 packets of 28 bytes

Fragmentation:

 Inject arbitrary amount of packets

 With a size up to 120 bytes

 Additionally, exploit IP fragmentation to
transmit IP packets of arbitrary size

Belkin F5D7053:

 Ignores TSC… you can simply replay a packet

 When connected to a protected network, it
still accepts unencrypted packets

Belkin F5D7053:

 Ignores TSC… you can simply replay a packet

 When connected to a protected network, it
still accepts unencrypted packets

Belkin F5D7053:

 Ignores TSC… you can simply replay a packet

 When connected to a protected network, it
still accepts unencrypted packets

 Very efficient Denial of Service

 Use fragmentation to launch actual attacks

 Forced to use WPA-TKIP?
 Use short rekeying timeout (2 mins)

 Disable QoS and update drivers (if possible)

 Update to WPA2-AES
 Specifically set encryption to AES only

@vanhoefm

Brucon 2012

