
Analyzing Internet Attacks

 with Honeypots

Ioannis Koniaris – ikoniaris@gmail.com

Workshop outline

About me

Workshop outline

 Cyber threats and countermeasures

 Information and systems security

 Human threat agents and malicious software

 Firewalls, Intrusion detection systems (IDS)

 Honeypots

 Introduction and definitions

 History / timeline

 Emulation of OSes and services

 Honeypot classifications

 Based on purpose, based on interaction level

 Network placement and operation

Workshop outline

 Honeypots (cont.)

 Other honeypot-related technologies

 Client honeypots

 Value of honeypots for information and network security

 Advantages / Disadvantages

 Legal issues concerning honeypot operations

 Kippo SSH honeypot

 Introduction

 Hands-on lab!!!

 Setup and configuration

 Attack analysis and visualization

Workshop outline

 Dionaea malware honeypot

 Introduction

 Hands-on lab!!!

 Setup and configuration

 Attack analysis and visualization

 HoneyDrive distro hands-on lab

 Introduction / guided tour

 QnA – proposals for new research projects!

Whoami

 DevOps, Security, Software Engineer (start-up anyone?)

 Academic research on honeypots/nets (AUTH: Aristotle

Univeristy of Thessaloniki, Greece)

 BruteForce Lab – http://bruteforce.gr

 Twitter: @ikoniaris

 Email: ikoniaris@gmail.com

 Interests: honeypots, honeynets, botnet tracking, malware

analysis, security visualization

http://bruteforce.gr/
mailto:ikoniaris@gmail.com

Information security

Human & machine threats

Information security

 Protection of information – an asset with special meaning

 Information security concepts and goals: confidentiality,

integrity, availability (CIA)

 McCumber Cube (1991)

 LM Cube (2013)

Scope of security operations

 Prevention

 OS, software patching

 Perimeter setup, firewalls, etc

 Security policies

 Detection

 Intrusion detection systems (IDS)

 Security monitoring

 Honeypots!

 Response

 Incident handling

 Forensic examination

Human threat agents

 Low level attackers

 “Script kiddies”

 Quick and easy break-in

 No real knowledge, just using tools and exploits

 The majority of attacks comes from script kiddies

 They seem harmless but they have frequent successes!

 Social acceptance, bragging rights, curiosity, political activism

 Medium level attackers

 Knowledgeable about security topics in general

 Understanding of the nature of vulnerabilities

 Can configure tools and hide tracks during exploitation

 Financial motivation (phishing, spamming, etc), political activism

Human threat agents

 High level attackers

 Advanced knowledge of security field and specific topics in

particular

 Can find new and unknown vulnerabilities and write exploits

 Can hide and cover their tracks with advanced techniques

 Pick (high profile) targets slowly and methodically

 Hired guns, financial motivations, political activism

Malware (malicious software)

 Worms

 Self-propagating malware

 3 phases: infect, attack, spreading

 Attack mostly common security vulnerabilities in a continuous

fashion (secondary: mail, P2P, IRC, etc)

 Viruses (it’s 2013, I know)

 Don’t auto-propagate

 Infect other programs, spread mostly through mail

 Trojan horses

 Keylogging, backdoors

 Usually camouflage themselves as legitimate software

Malware (malicious software)

 Rootkits

 Stealthy backdoor access

 High level of hiding inside the system

 Bots

 Autonomous programs

 Botnets

 Zombies, C&C servers,

bot herder/master

 Spamming, phishing,

illegal financial gains

Offensive countermeasures

Common weaknesses

Firewalls

 A device on the perimeter or inside a network, allowing or
disallowing packets based on specific criteria

 Stateless filtering

 Packet headers

 Quick, easy, low security

 Stateful inspection

 Creation of a table with client state/connections

 Allow connections from external networks if initiated from the
protected network (e.g. websites)

 Medium performance, medium security

 Deep Packet Inspection

 Combination of stateful filtering and IDS

 Examining content on a higher layer than that they need to

Firewall weaknesses

 A firewall cannot protect the network from attacks that

can bypass it

 A firewall cannot protect the network from inside threats

and internal attacks

 A firewall cannot protect host machines from getting

infected by malware

 Vulnerabilities in the firewall appliances themselves

Intrusion detection systems (IDS)

 Intrusion detection: a process that can identify anomalous,

non-compatible, erroneous or generally suspicious activity

 Types of IDSes

 Network based (NIDS)

 Packet checking, content filtering

 Host based (HIDS)

 System monitoring for suspicious changes

 Attack detection

 Signature based

 Pattern matching, someone must create these patterns first!

 Anomaly based

IDS weaknesses

 Networks mostly use switches, so NIDSes need to be
placed in front of them but this cannot secure the
network from the inside

 Throughput and “power” of the IDS can be limited

 IDSes produce data overload: many false positives!

 IDSes cannot detect or identify new attacks and exploits

 IDSes need expensive and high-tech hardware in order to
perform efficiently

 IDSes normally cannot process encrypted data (SSL,
IPSec, etc)

 Honeypots can give solutions to both firewalls and IDS
weaknesses!

Honeypots: definitions & intro

History and current state

Honeypots

 Definition:

 “An information system resource whose value lies in

unauthorized or illicit use of that resource” (Lance Spitzner)

 It’s a system with no production value

 There is no reason for a legitimate user to use it or interact

with it

 Any communication attempt with the system is automatically

considered malicious

 A honeypot that tries to connect to another resource is

probably compromised

 They are both deceit tools and traps

 Attackers waste time while their actions are monitored closely

Honeypots

 They cannot prevent attacks against the network by

themselves

 But, they can help in the detection phase of an attack and

identify the target and methods of exploiting

 They can be used in conjunction with firewalls and IDSes

and in fact “complete” their role by substituting for their

weaknesses

OS and service emulation

 Honeypot OS emulation is done using the so-called

“fingerprints”

 A fingerprint comes from the IP stack of an OS, as 8

parameters of the TCP/IP protocol are not stable – 67 bit

signature

 Different OSes and different versions of the same OS have

distinct fingerprints

 It’s the same way that various tools identify the remote OS, e.g.

nmap, p0f, etc

 Service emulation is done using scripts with identical

behavior and output as the real services

The history of honeypots

 Early 90’s, publications: “The Cuckoo’s Egg” by Cliff Stoll,

“An evening with Berferd” by Bill Cheswick

 1997: Deception Toolkit (DTK) by Fred Cohen

 The “grandparent” of today’s low interaction honeypots

 Perl scripts, emulating various vulnerable network services

 1998: CyberCop Sting, the first commercial honeypot

 Ran on Windows NT

 It could emulate a whole network of computers using different

fake IP stacks, not just one system

 1998: NetFacade, another commercial honeypot

 Limited success, but inspired the creation of Snort IDS

The history of honeypots

 1999: Formation of the non-profit “Honeynet Project”

 1999: ManTrap (rebranded as Decoy Server by Symantec)

 Up to 4 machines, fake network traffic between them

 2002: Tiny Honeypot by George Bakos

 Written in Perl, listens for connections on every unused port

 2002: Honeynet Research Alliance by Honeynet Project

 An effort to deploy many honeypots in various address spaces

around the world and share results

 2003: Snort_inline, Sebek, virtual honeypots

Current state of honeypot software

Honeypot classifications

Honeypot classifications

 Honeypots can be divided into categories based on two

criteria:

 A) The purpose of honeypot deployment

 B) The level of allowed interaction with the honeypot

 Honeypot categories based on purpose:

 Production honeypots

 Research honeypots

Honeypot classifications
 Production honeypots

 Placed along the real systems of a business, acting as decoys

 Ideally they are mirrors of real servers where attackers will waste
their time and effort while we are gathering intelligence on their
methods and attack vectors

 As said before, they cannot prevent attacks all by themselves!

 Research honeypots
 Their main goal is to monitor attack activities and capture malicious

connections, network traffic and files

 Their data are crucial to enhance the understanding of threat agents
and their ways of operation

 Usually deployed by researchers, universities, non-profits (e.g.
Honeynet Project), military/goverment agencies

 In our workshop we focus on research honeypots
 You are free to implement production honeypots at work

Honeypot classifications

 Honeypot categories based on the level of allowed
interaction:

 Low-interaction honeypots

 Medium-interaction honeypots

 High-interaction honeypots

 Low-interaction honeypots

 As the name implies, they offer little to no interaction between
the server and the attacker

 It’s not a real system, but software emulating one or more
network services

 Low added risk to the network, but it only logs connection
attempts: date and time, source IP and port, destination port

Honeypot classifications

 Medium-interaction honeypots

 Offer greater interaction between the system and the attacker

 The emulated network services respond to the attacker and

allow access to fake resources (e.g. a fake FTP server)

 Can be used to catch malware as well by emulating specific

vulnerabilities in a service

 Medium added risk but generally good results and data!

 High-interaction honeypots

 A real vulnerable OS given to attackers as sacrificial lamb

 Intruders will have real access and control of the system

 High risk and high reward! Greatest level of data capture, BUT

they must be isolated and monitored at all times! (pivoting)

Honeypot classifications
Low-interaction Medium-interaction High-interaction

Interaction level Low: no access Medium: controlled

access
High: full access

Real OS No No Yes

Risk level Low risk Medium risk High risk

Data collection Limited: only

connection attempts
Varied: depending on

intruder skills
Extensive: all

available data

Setup & config Easy Easy/Medium Hard

Maintenance Easy Medium Hard

Placement and operation

Network placement and operation

 Mainly 3 common honeypot placement spots:

 A) Externally, in front of the firewall, facing the Internet

 B) Internally, behind the firewall

 C) Demilitarized Zone (DMZ)

 External placement

 Used when trying to immediately make them available to

attackers for intrusion and takeover

 Most suitable for sole research honeypots

 Honeypots and other network hosts share the same subnet

 One or more public IPs are needed

 If only one is available, it’s assigned to the honeypot and a monitoring

station takes a private address

Network placement and operation

 Internal placement

 Most suitable to detect attackers (human or software) that
have breached the perimeter

 Effective early warning system

 High added risk to the network if using a high-interaction
honeypot and it gets taken over – egress firewall needed

 Ingress rules needed as well, mainly port forwarding: all ports
that are not being used can be forwarded to the honeypot

 DMZ placement

 Best choice for a business/organization

 Honeypots and other DMZ hosts share the same subnet

 Can be setup as mirrors of real systems in order to catch early
attacks against them DMZ

Other related technologies

Other honeypot-related technologies

 Honeytokens

 An object with no production value placed in a system as an
intrusion detection mechanism

 Various small electronic baits that no legitimate user should
access – e.g. fake admin account user/pass combination

 If a honeytoken is found in the application’s logs, the system has
been compromised

 Honeypages

 Fake web pages inside a real web app, with no production value

 There is no direct link to them, every request is considered
malicious

 A request can come from automated scanning, robots.txt
analysis, etc – honeypages log every info they can get

Other honeypot-related technologies

 Shadow honeypots

 Combination of honeypot and ADS (Anomaly Detection

System) – an alternative solution as a rule-based IDS

 “Suspicious” traffic is forwarded

to a honeypot which is a mirror

of the real application

 If an attack occurs the honeypot

resets its state and no harm is

done, if the traffic is OK it is

forwarded to the real server

Client honeypots

 Targeting servers is so 2008!!

 Attackers nowadays target client programs (browsers,

media players, file viewers etc)

 A client honeypot doesn’t wait passively for attacks to

come to it, but actively tries to find malicious websites

serving exploits targeting client applications

 They usually use HTTP, and emulate various web

technologies like JavaScript, Active-X, etc like a browser

 Three part model: queuer, the client, analysis engine

 Like traditional honeypots they are also classified into low

and high interaction

The value of honeypots

Advantages & disadvantages

Value of honeypots for network security

 Honeypots present a unique concept and very valuable
for information and network security

 They give almost no false positives

 One the of the biggest problems for IDS analysts is the “noise”
generated by their systems

 Honeypots have no production value and thus any interaction
with it can be automatically considered malicious and candidate
for further analysis

 They help us detect malicious actions early on

 Continuing from the previous point, they can detect real
attacks fast

 Sysadmins can use them to quickly classify the nature and
severity of attacks

Value of honeypots for network security

 New threat identification

 Every connection destined to a honeypot is considered

malicious and the actor behind it a threat

 New and unknown attacks can be logged and identified as

malicious as fast as common attacks

 Tools like Honeycomb can create IDS rules from these in

order to increase defense levels in a larger scale

 Also, any tools downloaded or content generated (e.g. IRC

logs) by attackers are saved for further analysis

 Add an extra layer of protection (Defense-in-Depth)

 For example when they are placed internally in order to catch

inside threats or warn sysadmins for malicious software

Other advantages of honeypots

 1. Simplicity of their idea: well known technology, not very hard
for a sysadmin to implement them

 2. Can be used as deceit systems: they can make attackers
waste time and effort on fake systems

 3. They provide a small amount of captured data of high value:
easy to analyze dataset and extract information

 4. Can catch early threats and attacks before they can cause
harm or damage: e.g. honeypots as mirrors of real production
systems can give us early warnings

 5. Low requirements in terms of hardware: even a Pentium can
run a modern honeypot! (yes, I’ve tried)

 6. Honeypots can be as effective in crypto environments
(where IDSes might have problems) or IPv6 networks

Disadvantages of using honeypots

 1. No real value if nobody attacks them!

 2. They have a very limited attack detection radius/scope,
as they can catch attacks only against themselves

 3. Compromised honeypots can be used as platforms to
launch further attacks against the network (pivoting)

 4. Honeypots can sometimes taunt attackers and thus
increase the level of overall risk

 5. Honeypots themselves can contain bugs or
vulnerabilities that either make them targets in a
traditional sense or make them easily identifiable

 6. Placing honeypots increases the overall complexity of a
network – not good from a security standpoint

Legal issues with honeypots

Legal issues concerning honeypot usage

 Using and operating honeypots present some legal
challenges, due to the nature of these systems

 Different legislations across the world, different laws
concerning the acquisition and storage of data

 No definite answer can be given, even though all top
honeypot researchers agree that we are on the safe side!

 Some of the specific legal issues:

 A) Privacy:

 Essentially the question: “how much data can an admin gather
and store before a privacy problem arises?”

 Is it legal for an admin to capture data from other company
employees? What about external threats in general?

Legal issues concerning honeypot usage

 Privacy (cont.)

 According to Lance Spitzner (using info from the US legal

system; specifically laws governing forensic investigations and

obtaining evidence):

 The people breaking into these systems are NOT

AUTHORIZED to use them, and if they place any files on them,

they have given up their privacy rights to that data by placing it

on the honeypot

 By using honeypots for communication, they have given up

their right to privacy in that communication, as honeypots are

not service providers and are not bound by privacy

requirements designed for service providers

Legal issues concerning honeypot usage

 B) Entrapment

 A person is 'entrapped' when he is induced or persuaded by law
enforcement officers or their agents to commit a crime that he had
no previous intent to commit

 Again, setting up honeypots cannot be considered an
entrapment activity because:

 Honeypots do not induce or persuade anyone, neither
promote malicious activity by themselves only

 Attackers find and attack honeypots based on their own
initiative

 Most sysadmins are not law enforcement agents and they are
not using honeypots to collect evidence and prosecute, but
instead as means to detect and possibly learn about attacks

Legal issues concerning honeypot usage

 C) Liability

 Hypothetical scenario: a honeypot of company X is

compromised by an attacker and is used as the source of

attacks against the network of company Y.

 Who’s to blame???

 No definite answer in this case, BUT we should also have

mitigated this risk in the first place! (firewalls, egress filtering,

etc)

Hands-on lab preparation

VM SETUP FOR HANDS-ON LAB

 Pass around the DVD(s)

 Install VirtualBox or download: http://www.virtualbox.org

 Copy the HoneyDrive OVA file to your HDD or

download: http://bruteforce.gr/honeydrive

 Double-click on it to import it in VirtualBox (~15min)

 Copy the “dataset” folder to your HDD or download:

http://bruteforce.gr/brucon-dataset.zip

 Let the game begin!!!

http://www.virtualbox.org/
http://bruteforce.gr/honeydrive
http://bruteforce.gr/brucon-dataset.zip
http://bruteforce.gr/brucon-dataset.zip
http://bruteforce.gr/brucon-dataset.zip

Kippo SSH honeypot

Kippo-Graph

Kippo SSH honeypot

 https://code.google.com/p/kippo/

 Kippo is a medium-interaction honeypot

 Written in Python (Twisted)

 It logs the entire shell session (UML compatible)

 Also saves all the files downloaded by attackers

 Kippo emulates a Debian 5 OS

 You can add/edit/remove files

 You can add fake file content (e.g. /etc/passwd, etc)

 You can add fake command output (e.g. ifconfig, ssh, etc)

https://code.google.com/p/kippo/

Kippo SSH honeypot

 Online guides:

 http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html

 http://bruteforce.gr/logging-kippo-events-using-mysql-db.html

 Interesting stuff:

 dl folder, log/kippo.log, log/tty, utils/playlog, fs.pickle, honeyfs folder,
data/userdb.txt, kippo.cfg

 MySQL schema:

 auth, clients, input, sensors, sessions, ttylog

 Visualization with Kippo-Graph

 http://bruteforce.gr/kippo-graph

 DEMO TIME!

http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/installing-kippo-ssh-honeypot-on-ubuntu.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/logging-kippo-events-using-mysql-db.html
http://bruteforce.gr/kippo-graph
http://bruteforce.gr/kippo-graph
http://bruteforce.gr/kippo-graph

Dionaea malware honeypot

DionaeaFR

Dionaea malware honeypot

 http://dionaea.carnivore.it/

 The successor of Nepenthes honeypot

 Written in C/Python

 Emulates protocols, not vulnerabilities per se

 Mail protocol: SMB (CIFS), port 445

 Other protocols: HTTP(S), (T)FTP, MSSQL, MySQL, SIP

 Dionaea uses libemu to detect and analyze shellcodes
(profiling – GetPC)

 Shellcodes run inside a libemu VM and API calls get
recorded

http://dionaea.carnivore.it/

Dionaea malware honeypot

 Different types of payloads

 Shells: bind or connectback – Dionaea emulates cmd.exe,

parses the input and acts accordingly

 URLDownloadToFile: uses the API call to download a file

through HTTP and executes it locally

 Exec: some shellcodes use the WinExec API call – Dionaea

behaves like in the bind/connectback case

 Multi-stage payloads: the first stage receives a

second payload, shellcode is executed inside

the libemu VM

Dionaea malware honeypot

 Malicious file download

 After analyzing the shellcode Dionaea tries to download the

malicious binary from the extracted web address

 FTP and TFTP downloads are implemented in Python, HTTP is

done using libcurl

 Files are stored locally for further analysis, and Dionaea can

also send them to online malware analysis services (VirusTotal,

CWSandbox, Anubis, Normal Sandbox)

 Logging

 Text based logging can be very difficult to parse/analyze,

although you can use filters

 Dionaea uses “incidents” and “ihandlers”

Dionaea malware honeypot

 Logging (cont.)

 “incidents”: Dionaea’s internal communication system

 Every incident has an origin, a path and some properties

 Every incident is handled by an appropriate incident handler called

“ihandler”

 Dionaea can use a number of different ihandlers, e.g. logsql, p0f,

virustotal, etc

 Online guides:

 http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html

 http://bruteforce.gr/some-dionaea-statistics.html

 http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html

http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/starting-with-dionaea-malware-honeypot.html
http://bruteforce.gr/some-dionaea-statistics.html
http://bruteforce.gr/some-dionaea-statistics.html
http://bruteforce.gr/some-dionaea-statistics.html
http://bruteforce.gr/some-dionaea-statistics.html
http://bruteforce.gr/some-dionaea-statistics.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html
http://bruteforce.gr/visualizing-dionaeas-results-with-dionaeafr.html

Dionaea malware honeypot

 Interesting stuff:

 dionaea/bin, dionaea/etc/dionaea, dionaea/var/log,

dionaea/var/dionaea, dionaea/var/dionaea/binaries,

dionaea/var/dionaea/bistreams

 Configuration

 logsql, p0f, virustotal (ihandlers)

 Analysis (readlogsqltree, phpliteadmin, dionaea-scripts)

 Visualization (gnuplotsql, DionaeaFR)

 DEMO TIME!

Questions & answers

General discussion

Feedback!

 PLEASE, don’t forget to send me your feedback and

suggestions: ikoniaris@gmail.com

 Some other contact info:

 BruteForce Lab – http://bruteforce.gr

 Twitter: @ikoniaris

 And again, some of my interests:

 honeypots, honeynets, botnet tracking, malware analysis,

security visualization

mailto:ikoniaris@gmail.com
http://bruteforce.gr/

Thanks BruCON, it has been a pleasure!!!

