HTTP Time Bandit

Tigran Gevorgyan & Vaagn Toukharian

Tigran Gevorgyan
-Engineering Manager
Qualys

Vaagn Toukharian
-Principal Engineer
Qualys

o We fix stuff &
accidentally break
things

e Interested in time
travel

e Lovetotri
(swim/bike/run)

What?

Yet another application layer DOS attack that
strives for resource starvation through
asymmetric resource utilization.

e Method

e Tool

e Stats

e Defence

e Usage possibilities

DAMIELCARDLE 2003

DOS Clasification

e Crash, non-resource attack, degrading IT
capabilities
e Resource consumption attack
e Network resource exhaustion
e Infrastructure device resource exhaustion
e Target resource exhaustion
e OS or network layer (e.g. SYN flood)

e Application layer
e Business logic “layer”

From DoS Attack Taxonomy [1]

http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy/

Classic Application Layer

DDOSing blindly

GET index.html
10000 x of the GET
No feedback

Near-Symmetrical
load

Smarter Bots

S
S

lowLoris
owHttptest

S

owRead

PKI abuse

SQL wildcards
WebSockets
connection hogging

Some Exotic L7 DOS

e Using ‘%’ in the request may cause the DB to
fetch every row in the DB (use genetic
algorithm to figure out a payload that makes
the server to work the hardest?)

e Business logic - “above L7 attacks”

o Too many items in the cart
o Too much logging caused by invalid inputs

o Too many temporary objects in memory
(attachments for webmail)

Get Flooding With Spice

e Is not exotic

e It ain’t Slow*

e Not going for exhaustion of 20k HTTP
connections

e Resource consumption is asymmetrical by
nature, just trying to get bigger divide

e Just a Get flood, with some analysis done
before flooding takes place

The Proposed Method

Method of detection of the critical resource

® Spider over the web site and collect transfer times for
each resource

® (alculate the average speed and distribution of transfers

® Identify the resources that have slower average transfer
times

Transfer time's correlation with load

e CPU intensive resources take more time to response
e Resource size is not significant

Lies, Dirty Lies and Statistics

Average speed of download distribution

200)
'‘Normal® Resources

150
w
=)
e
3
2
@
- 100
=]
]
o
e
32 Slower Resources

50

ol PR | i | I -.l- - |- _.- J

0 20 40 60 80 100 120 140
Bytes/Second

Using Statistics to Normalize

the Data

e Mean as the measure of central tendency
o Calculate the mean of all resource download speeds

o Calculate the means of each resource download
speeds

o Select the resources whose download speeds are less
(slower) than the mean of all download speeds

e Selecting resources with lower mean
e Discarding resources with large variance

Speed Distribution

Average Speed Standard Deviation

1,000
@
S .
L
o
Q 500 =
P &
3
5
2] e
@
@
0 em
0 1,000 2,000

Average Speed in Kb/Sec

Attack Like Stage of Testing

Measurement of service degradation while doing a hard test
for narrowing down the choice of links

$

Original Stressed
./crwlr --url http://10.12.0.3/Concrete5/Concrete5-6.0/ --verbose 1
--depth 3 --count 10 --xml concrete.xml mean/SDeV mean/SDeV

$

crwlr --count 100 --in concrete.xmlé&

crwlr --count 100 --in concrete.xmlé&

Banit 0 | 23.039/3.531 | 28.058/6.272

crwlr --count 100 --in concrete.xmlé&

http://10.12.0.3/Concrete5/Concrete5-6.0/index.php/blog/

Banit_1 | 23.039/3.531 | 27.568/6.039

original mean/sdev: 23.039/3.531 stress mean/sdev: 28.058/6.272

original mean/sdev: 23.039/32.531 stress mean/sdev: 27.568/6.039

original mean/sdev: 23.039/3.531 stress mean/sdev: 27.389/5.927 Ban|t_2 23039/3531 27389/5927

The Art of (D)DOS Detence

“Hard it is, but try we can for DOS at least”

e Load Balancing

e Identify/Fix resource hogs
o Use our tool for this

e Apache config suggestions
e Other Apache modules
e Advanced mod_ security protection

“Fail those will if used is force”

[.oad Balancers

Vendors offer DOS protection solutions within Load
Balancers and Routers

e Stopping Get Floods using rate-limiters, unusual
traffic filters, source checks

Possible issues

e Internal IP leakage

e If protections are sensed the attacks could be crafted to
perform just under the threshold

e If the attack detection is based on similarity of requests
mutation could fool it

Commercial Protection

Services

e Few players using limiters for:
o Resource rate,
o Connection,
o Originating IP
e Some Slow* defences
e mod_security like measures against SQLi and XSS

e Good cloud based solutions cost >$150/m

e “would not use the full-blown solution because don’t
want to degrade the user experience”

e Those could fail as described in Universal-DDOS-
Mitigation_ Bypass[2]

Using the Tool for Good

e Identify/Fix resource hogs
o Use our tool for this

o Manual(intelligent) tweaking of the request to get
possible higher stress

o Confirm the high resource usage by stressing the

“finds” with parallel requests and measuring the
degradation

e Inideal world the tool would generate conf
files for DOS protection modules

Playing with Apache Configs

Baseline, no protection

e 1 client running 10x parallel requests of the most
expensive resource

e 3% CPU on the client machine

e Server:i7, 4 core, 8 gb

e 98% CPU utilization on the server

Standard config measures ?

Nothing that would really help Get Floods, but there
are some setting that would help with Slow* attacks[3]

mod_ security

e Simple mod_security protection [4]

o Requests per IP limit, blocking the violators
o Effective but too strict

o Blocks the offensive IP right away.

o CPU usage goes down to 0%

SecRule ip:requests "(@eq 50" "phase:1l,pass,nolog,setvar:ip.block=1,
expirevar:ip.block=5,setvar:ip.blocks=+1,expirevar:ip.blocks=3600"

e Advanced mod_ security protection

o Identification of regular flows
o QOut of ordinary flow filtering
o State coherence checks

o Still only a theory

mod_ limitipconn

Limits the number of simultaneous downloads
permitted from a single IP address [5]

MaxConnPerIP 3

Cons:

e A bit crude
e Need to identify the (arbitrary) limit

Pros:
e Limites CPU to 38% CPU

Implements control mechanisms that can
provide different priority to different requests
and controls server access based on available
resources [6]

QS SrvMaxConnPerIP 5 0

Works =

e Limites CPU to 38% CPU f ==

e “QS_SrvMinDataRate” will help to [Biassas®
fight slow* attacks -

mod_bwshare

Accepts or rejects HTTP requests from each
client IP address, based on thresholds set by
past traffic from a particular IP address|[8]

BW_txldebt max 30
BW_txlcred rate 0.095
BW_tx2debt max 3000000
BW_tx2cred rate 2500
Cons:

Tricky with setting the limits
Pros:
Sophisticated way of setting a limit

mod throttle

Is intended to reduce the load on your server,
and the data transfer generated by popular
virtual hosts, directories, locations, or users.

Discontinued, because it was angry and green :)

The rules:
N/A

The effect:
N/A

mod evasive

Provide evasive action in the event of an HTTP
DOS /DDoS or brute force attack. [7]

DOSPageCount 10
DOSSiteCount 100
DOSBlockingPeriod 60

e Once detect all the connections
from an attacker are dropped

e This really works.

e Qur favorite for now

Conflicts with Slow* Attacks

e Slow* attack mitigation is an addition
e mod_evasive could not protect from these
e There is no conflict (good news)

We suggest using these apache directives for
Slow* attack mitigation:

RequestReadTimeout

KeepAliveTimeout

KeepAlive

MaxRequestWorkers

http://httpd.apache.org/docs/current/mod/mod_reqtimeout.html#requestreadtimeout
http://httpd.apache.org/docs/current/mod/mod_reqtimeout.html#requestreadtimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalivetimeout
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://httpd.apache.org/docs/current/mod/core.html#keepalive
http://httpd.apache.org/docs/current/mod/mpm_common.html#maxrequestworkers
http://httpd.apache.org/docs/current/mod/mpm_common.html#maxrequestworkers

mod_ httpbl

Not exactly for protecting the server from a
DOS attack but is cool as it is leveraging the
“Project Honey pot”

e HoneyPot collects a list of offenders
e List of offenders gets blacklisted

httpbl.sourceforge.net

http://httpbl.sourceforge.net/

Usage

of HTTP Time Bandit

The Good

Find potential CPU/DB hogs in my web apps

The Bad

Automated iterative analyzer attacker

Probably should not be spelled out:)
Imagine “The Bad” x 1000

Back to the Future

e Understanding Load
Balancers

e SQL wildcard usage

e State Reset cost
analysis

e Automated Attacker,
service degradation
measurement

Thank You

tgevorgyan@qualys.com
vtoukharian@qualys.com

TIME BANDIT

JUNEAU, AR

https://github.com/Qualys/timeBandit
https://github.com/Qualys/timeBandit

References

http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy
https://media.blackhat.com/us-13/US-13-Lee-Universal-DDoS-Mitigation-Bypass-WP.pdf
http://httpd.apache.org/docs/current/misc/security tips.html
http://blog.cherouvim.com/simple-dos-protection-with-mod_security
http://dominia.org/djao/limitipconn.html

http://opensource.adnovum.ch/mod_qos
http://www.tecmint.com/protect-apache-using-mod_security-and-mod_evasive-on-rhel-centos-fedora/

© N o Ok w0~

http://www.topology.org/src/bwshare/README.html

http://blogs.gartner.com/anton-chuvakin/2012/06/06/quick-dos-attack-taxonomy/
http://blog.cherouvim.com/simple-dos-protection-with-mod_security
http://dominia.org/djao/limitipconn.html
http://opensource.adnovum.ch/mod_qos

