
Secure channels
Building real world crypto systems

Sander Demeester

Saying ‘Hi’
• Some fun crypto theory

• What are secure channels

• Security notions

• Constructing secure channels

• Protocol design

• Real world protocols

• Conclude

Some fun theory!

What are secure channels?
Conceptually we want to guarantee the confidentiality and integrity of data

traveling over untrusted networks

This conceptual goal is accomplished by something called “a secure
channel”

[Canetti and Krawczyk] define a secure channel as a channel protocol that
is both a secure authentication protocol and a secure encryption
protocol

Often this channel protocol is session-based message driven.

Secure channel objectives
The concept is achieved by building a secure channel, we want to guarantee certain properties of
the messages being exchanged over this channel

• Confidentiality / data secrecy

• Integrity: Making sure data has not changed while transferring

• Authenticity: Making sure the origin is bound to a know entity

• Application protocol multiplexing

• Allowing multiple higher level protocols to be multiplexed over the same record layer

• Being able to communicate alerts

Eve

ChannelAlice Bob

• Confidentiality: data secrecy (is only read by Bob)

• Integrity: Making sure data has not changed while transferring (is not changed)

• Authenticity: Making sure the origin is bound to a know entity (is sent by Alice)

Application protocol multiplexing Being able to communicate alerts

m0

m0

m0

Layers of abstraction

App layer

Secure channel layer

App layer

Secure channel layer

• Higher level protocols can be multiplexed over the same channel

Security notions
What do we mean when we say “secure”?

kk

Key exchange

Channel

m0

m1

Alice Bob

Eve

Channel

k k

Ek (m0) ! c0

c0
c1

Ek(m1) ! c1

Setup

Dk(c0) ! m0

Dk(c1) ! m1

Channel

k k

m0,m1

b
r�! {1, 0}

cb

Ek(mb) ! cb Dk(cb) ! mb

m0,m1

b ! 0?
b ! 1?

What do we mean with “confidentiality”

(Single round)

Channel

k k

b
r�! {1, 0}

b ! 0?
b ! 1?

What do we mean with “confidentiality” when reusing a key

m0,0,m0,1

m1,0,m1,1

Ek(m0,b) ! c0,b
Ek(m1,b) ! c1,b Dk(c1,b) ! m1,b

Dk(c0,b) ! m0,b

c0,b
c1,b

m0,0,m0,1
m1,0,m1,1

(Multiple round)

Channel

k k

m0,m1

b
r�! {1, 0}

cb

Ek(mb) ! cb Dk(cb) ! mb

m0,m1

b ! 0?
b ! 1?

c0b m0
b

What do we mean with “authenticated 
message”?

(Multiple round)

6= cb

Channel

k k

What do we mean with “integrity”?

c0

c1

Ek(m0) ! c0
Dk(c0) ! m0

Ek(m1) ! c1

Alice: is something that Bob wrote? (Single round)

c0i 6= ci m0
i

c⇤

Dk(c
⇤) ! m⇤

m⇤

c⇤

Eve: generate valid ciphertext

Channel

k k

Ek (m0) ! c0

c0
c1

Ek(m1) ! c1c2

Dk(c0) ! m0

Ek(m2) ! c2
Dk(c2) ! m2

Dk(c1) ! m1

m0,m1 or m1,m0

What we mean with “stateful secure channel”?

?

(Single round)

Constructing a secure
channel

Constructing a secure
channel

• An authenticated key establishment protocol.

• One, both or more parties are authenticated (depending on the channel setting)

• Typically using asymmetric or symmetric crypto

• A key derivation phase

• Channels keys to be used for symmetric encryption and MAC

• Using the derived keys to further protect communication

• Encryption gives confidentiality

• Message authentication provides data authenticity and data origin
authentication

Secure channel: Nice to
have?

• A clean and well defined API

• Developers do not care about tweaking the channel when it works

• Developers want to “open”, “close”, “send” and “receive”

• Does the channel provide stream based functionality or message oriented
functionality

• How are channel errors communicated to the application layer?

• Does the protocol channel handle retransmission? The application protocol or the
transport protocol?

• Does the channel provide compression?

These options all impact security of the channel

Secure channel
protocol design

Phases of a “secure channel
protocol” - run

• Channel establishment

• Key establishment

• Secure data transfer

• Finish the protocol

• Part 1: Authenticated key exchange

• Key creation (Diffie–Hellman)

• Key transport (using RSA)

• Part 2: Secure data transmission (messages must be authenticated and encrypted)

• Using symmetric constructions to encrypt and authenticate the data

Authenticated key
exchange protocol

• (A)KE is a protocol that specifies how two parties can
establish a shared session key to be used during a
session

• During the execution of KE it is desired that parties are
also able to get some assurance about the identity of
the communicating parties.

• Key exchanges should typically be linked to
authentication

• Preferably AKE should have the perfect forward secrecy
property

Perfect forward secrecy
• The AKE provides keys that are “perfectly” secure

in the future

• Introduce the notion of a “long term key” () and
“short term key” ()

secure session key compromise

security guarantee of the AKE derived key

Ltk
Stk

Perfect forward secrecy

More formally we say that an AKE provides perfect forward
secrecy if the disclosure of the long term key does not

compromise the derived session key

Key derivation
phases

• Our AKE will result in a shared secret, but we need more then a single key for our
secure channel

• Often multiple keys are required (refer to this as channel keys)

• Read an write encryption keys, MAC keys

• TLS 1.3 uses HKDF (HMAC based key derivation function, RFC5869)

• SSHv2 uses a hash function (RFC4253)

Protecting messages

• CTR uses a block cipher to build a stream cipher

• Random initial value chosen for IV

• Encrypt blocks to create a stream of ciphertext blocks

• Same process to decrypt

IV IV + 1 IV + 2

· · ·

IV + n

E E E E

����m0 m1 m2 mt

ctc0 c1 c2

• With CBC every encrypted block depends on all previous
encrypted blocks

• Identical plaintext blocks will encrypt to different values

• Randomised IV will result in different ciphertext messages
when identical plaintext messages are encrypted

IV · · ·
E

���

m0 m1 m2 mt

ctc0 c1 c2

E

�

E E

• CBC and CTR

• Offers no message authentication

• Adversaries can still modify the ciphertext leading to
predictable changes in the plaintext

f(ci) ! c0i, Dk(c
0
i) ! p0i

• Flipping bits in leads to controlled changes in

• But block is randomised

� �

Ci�1

Pi�1

Ci

Pi

D D

Ci�1 Pi

Pi�1

Example: CBC

Message integrity (MAC)

• Message authentication code (MAC’s) provide authentication and
authenticity protection for messages

• HMAC is general method for building a MAC scheme from a hash
function.

• The key is derived from the key derivation phase of the channel protocol

• This MAC construction guarantees unforgeability

t S(k,m)

m||t

010 V (k,m, t)

I = (S, V)

S : K ⇥M ! T

V : K ⇥M ⇥ T ! {1,?}

The “Cryptographic doom
principle”

As stated by Moxie Marlinspike:

“if you have to perform any cryptographic
operation before verifying the MAC tag on a
message you’ve received, it will somehow

inevitably lead to doom.”

And it has…

Authenticated encryption

• AE is a conceptual goal were we try to accomplish
both message authentication and data
confidentiality in a single construction

• GCM, OCB, CCM constructions

Dk(Ci) ! Pi _ ?

Authenticated encryption
with additional data

• Same as AE but now we can include data that is
not encrypted but is authenticated.

Ek(AD,Mi) ! Ci

Dk(AD,Ci) ! Mi _ ?

Additional data (not encrypted, only authenticated)AD :

Real world protocols

What a developer wants:

A secure drop in replacement from TCP

TLS

• TLS handshake protocol (AKE)

• Will provide us with channel keys

• TLS record protocol (AEAD)

• Will encrypt and authenticated application provided
messages

TLS 1.3: Record protocol
• Record protocol:

• All messages are protected using AEAD schemes, so the result is
encrypted and authenticated. No longer a dedicated MAC

• The additional data will always be zero

• Records are typed, allowing for multiplexing of higher level protocols:

• Handshake

• Application

• Alert

• Keys for the algorithms are supplied by the HKDF function

SSHv2

• SSH transport layer

• Initial connection (handshake)

• Creates a secure channel using the binary packet protocol

• SSH authentication protocol (client authentication)

• Runs on the transport protocol

• SSH connection protocol (concurrent connections over a single
transport layer)

• SSH uses a multi layered architecture

SSH binary packet protocol

• Single ciphertext message can
be fragmented over multiple
packets

• Stream of ciphertext bytes

seq len pad len payload padding

Ciphertext

E M

MAC tag

• CBC mode uses chained IV (last
ciphertext block is IV of new
message)

• CTR mode with initial counter value
from handshake

P0

C0

IV P1

C1

E E

4 bytes length field

� �

SSH binary packet protocol with CBC

SSH binary packet protocol

• First block of the ciphertext will be decrypted (the first 32 bits are the length field)

• This will tell the SSH server how many bytes to read before attempting decryption

• Server will decrypt as many data as the length field specifies, after decryption it will validated the
MAC

• The attacker will send one block at a time until we receive a MAC error

• The attacker knows when the first 32 bits of the first plaintext block (length)!

• Can be used to mount a plaintext recovery attack

Ciphertext MAC tagE(len)

D len

read() ?

First 32 bits of first CBC block

�

P0

IV

D

C0

�
D

R

P
0

1

�
D

R

P
0

2

· · ·

MAC tag

4 bytes length field

• We submit the IV and first block

• We keep submitting random blocks (16 bytes) until we receive a MAC
error

• Once we receive a MAC error we know the value of

�

IV

D

Ci

P
0

0

�
D

CiCi�1

P
0

i

P
0

i = Ci�1 �D(Ci)

= Ci�1 � IV � P
0

0

Paper: http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf

To conclude

To conclude

• We looked at the definition and properties of a secure
channel

• We discussed the notions of security for those properties

• We looked at the different phases of a secure channel

• We explored TLS record protocol and SSH binary packet
protocol

Thank you

