
Browser Exploits? Grab ’em by the Collar!
Presented By: Debasish Mandal (@debasishm89)



About Me

• Security researcher, currently working in McAfee IPS Vulnerability 
Research Team.

• Working in information security industry for past six years.

• At first was mostly focused on penetration testing of web applications 
and networks.

• Last three years at McAfee, primary focus has shifted to vulnerability 
research, reverse engineering, exploits, and exploitation techniques.

• In spare time, do security bug hunting, blogging.

• http://www.debasish.in/

• https://securingtomorrow.mcafee.com/author/debasish-mandal/

http://www.debasish.in/
https://securingtomorrow.mcafee.com/author/debasish-mandal/


Agenda

• Brief overview of browser exploits and exploitation techniques.

• Current solutions to detect and catch browser exploits.

• Motivation behind this research.

• TCP live stream injection to catch browser exploits.

• Advantages over current exploit detection systems.

• Demo

• Closing remarks

• Q&A



Browser Exploits

• A form of malicious code that takes advantage of a flaw or 
vulnerability in a browser and compromises user security

• Targets different components of browser or operating system

• Exploit codes usually written in JavaScript/HTML

• Usually delivered in form of legitimate web page



Browser Architecture and Attack Surfaces 

User Interface

Browser Engine

Render Engine

Flash

PDF Parser ActiveXXML Parser

JavaScript Interpreter



Browser Attack Surfaces 

• HTML rendering engine

• JavaScript interpreter

• Third-party libraries

• XML parser

• ActiveX components

• Flash

• PDF parser

• Any component that deals with untrusted data



Types of Browser Exploits

Exploits abusing memory corruption

• Attacker tricks browser to 
unintentionally modify memory 
location, violating memory safety.

• Attacker does memory spraying to 
prepare a predictable memory layout.

• At final stage, shellcode is used to 
compromise system security.

Exploits abusing logical/design flaws

• There is no generic technique to 
exploit logical design flaws in 
browsers.

• Exploitation depends completely on 
the anatomy of a vulnerability.



Exploiting Memory Corruption in Browser

1. Exploit delivery

2. The exploit deobfuscates itself (in case it is an obfuscated exploit)

3. Prepare desired memory layout for exploitation (by spraying heap 
with malicious code such as shellcode, ROP chain, etc.)

4. Trigger required browser vulnerability(s)

5. Bypass DEP/ASLR/other mitigation techniques (if there are any)

6. Transfer program control flow to the malicious code, which is 
placed in the desired memory location in Step 2.



Example: Exploiting Use-After-Free 
in Browsers



Existing Solutions to Detect and Prevent 
Browser Exploits

• Host-based intrusion prevention system

• Network-based intrusion prevention system

• Sandbox-based network intrusion prevention system



Existing Solutions to Detect and Prevent 
Browser Exploits: Host-Based Detection

• Installed on endpoints; monitors system for suspicious 
activity by analyzing events occurring within that host.
• Hooks different OS APIs and monitors them

• Inspects API arguments at runtime

• Follows different heuristics to detect anomaly



Example of Host-Based Browser Exploit Detection



Limitations of Host-Based IPS

• Agent based

• Hook hopping is an old-school technique to bypass host-
based IPS.

• Although capable of catching obfuscated exploits, host-
based IPS has a significant impact on OS performance.

• Pushing new updates/signatures to every endpoint can be 
painful for any large organization.



Existing Solutions to Detect and Prevent 
Browser Exploits: Network-Based Detection

• Sits in corporate gateway

• Intercepts HTTP response

• Looks for malicious tokens in HTTP response

• Sandbox-based network IPS solutions execute/open files in a 
sandbox and look 
for suspicious behavior.



Example of Network-Based Browser Exploit 
Detection



Limitations and Drawbacks of Existing Exploit 
Detection System: Network Based

• Mainly malicious token-based detection mechanisms and 
browser exploits are very dynamic in nature. Very 
unreliable.

• Has significant impact on network monitoring device 
performance. Increases latency.

• Successful execution of browser exploits in a network 
sandbox is very difficult because they are highly dependent 
on the environment.



Motivation Behind This Research

• One browser-based exploit can be written/obfuscated in 
thousands of ways. Hence signature-/token-based network 
detection system fails drastically. 

• Host-based IPS has its own limitations: impact on OS 
performance, effort required to push updates to each 
endpoint.

• For any host IPS, pushing new updates to each endpoint can 
be painful.



The Idea

• As with host-based IPS, if we can somehow place our 
application behavior-monitoring code (e.g., hooking code) 
into the user’s system, we can make the system generic and 
solve the problem of obfuscation up to a certain level.

• Can we do this without installing an agent 
on the endpoint?







Basics of Network Packet/TCP Live Stream 
Injection Techniques

• Packet injection is a process of interfering with an 
established network connection, by constructing packets to 
appear as if they are part of the normal communication 
stream.



General Use of TCP Live Stream Injection 
Techniques

• Internet Service Providers, router vendors inject arbitrary 
advertisements into live web pages.

• Disrupting certain services

• MITM attacks



TCP Live Stream Code Injection for Browser 
Exploit Detection
• The detection system injects a tiny piece of JavaScript code into 

the (HTTP response body) page. 

• Injected in such a manner that when the JavaScript is delivered 
to user’s browser, the injected JS code is 
executed first.

• Works by injecting our script at the top of the page. 

• https://www.infoworld.com/article/2925839/net-
neutrality/code-injection-new-low-isps.html

• https://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-
for-hs-ok/

https://www.infoworld.com/article/2925839/net-neutrality/code-injection-new-low-isps.html
https://arstechnica.com/tech-policy/2013/04/how-a-banner-ad-for-hs-ok/


Working Principle



Working Principle, Continued

The injected code 
looks like this when 
we intercept it.



Working Principle, Continued

Note : We are talking about 
hooking JavaScript API(s), 

not OS APIs.



Installing a Built-In JavaScript API Hook

• Injected JavaScript code is executed first.

• The injected code installs JavaScript API hooks.

• Mainly it hooks JavaScript APIs that are commonly used by 
malicious developers for exploitation, obfuscation, 
preparation of memory layout, etc. 

• Once our JavaScript hooks are installed in the client’s 
browser, whenever those APIs are called from the page, we 
can intercept its arguments.



Installing a Built-In JavaScript API Hook



Commonly Used JavaScript APIs in Browser 
Exploitations
• escape()

• unescape()

• String operations related API such as substring(x,x,)

• Functions involved in Array() operations

• Functions involved in string operations.

• document.write(), document.createlement(), etc.

• Functions involved in ActiveXObject

• And hundreds more…



Built-In JavaScript API Hook Example

• If we have the JavaScript 
function unescape() hooked.

• We can easily intercept the 
argument passed to it…

• And perform various checks 
to determine if the 
parameter is malicious in 
nature.



Previous work on JavaScript Hooking

• BeEF: The Browser Exploitation Framework – hook.js

• Javascript Hooking for Malicious Website Research by Liran Englender
and Kris Kaspersky



Demo 1: Built-In JavaScript API Hook

• The demo quickly shows how JavaScript API hooking works.



Example of Exploit Detection: Shellcode

• Often browser exploits handle shellcode within JavaScript 
code:

• When the system hooks the unescape() function and 
intercepts argument passed to it.

• And looks for malicious opcodes/patterns often found in 
shellcode.



Example of Exploit Detection: Shellcode

• Malicious opcodes such as
• Call pop

• FS:[00]

• FS:[30h]

• Call xxxx

• nop sleds

• Etc.



Example of Exploit Detection: Spray

• We reviewed several exploits and classified JavaScript APIs 
used for preparing memory layout and spraying. 

• One very popular API for memory spraying is Array(). Real-
world exploits frequently use APIs like Array(), Uint32Array(), 
(push, pop). 

• During memory spraying these functions are very 
aggressively called by the exploit code. 



Example of Exploit Detection: Spray

• Keep track of Array() created 
dynamically

• Keep checking when some 
operations are done on 
them and looks for 
suspicious tokens.



Example of Exploit Detection: Spray

• Intercepting Array.push() routine.



Demo 2: Heap Spray Detection



Example of Exploit Detection: ROP Chain

• The ROP chain will have a certain 
pattern, which can be used to 
detect whether any JavaScript 
string has an ROP chain.

• ROP gadgets are chosen from a 
single module; the most 
significant byte of addresses 
pointing to an ROP gadget will 
always remain same. 



Example of Exploit Detection: Dynamic 
Element Creation

• Once the exploit deobfuscated itself, it may try to 
dynamically create several elements to load the exploit.

• We have seen one very common technique used by exploit 
developers: to load the exploit through 0 x 0 or an invisible 
iframe.

• These iframes can be created dynamically in many ways. One 
is document.createElement("iframe");

• document.write(……)



Example of Exploit Detection: Dynamic 
Element Creation

• This shows how our exploit 
detection system hooks into 
the document.write() 
function and intercepts 
arguments. Once the 
arguments are intercepted, 
we can perform various 
checks to decide if the 
write() call is suspicious.



Exploit Detection: Use of ActiveXObject()



Hooking User-Defined JavaScript Functions

• To hook a custom user-
defined JavaScript function, 
the detection device should 
be able to identify functions 
in an HTTP response and 
inject a line of code into it.



Hooking Custom Functions 
(Inspecting Passed Arguments)
• The injected line of code 

passes arguments to the 
function ScanArgs().

• “Arguments” is a list that 
holds the arguments passed to 
any function.

• The example ScanArg() 
function performs several 
integrity checks to determine 
if an attack is in place.



Demo 3: Hooking Custom JavaScript 
Functions



Inspecting Strings Declared as Global Variables

• The detection system can injects a 
tiny piece of code in <script> 
blocks.

• In the global execution context 
(outside of any function) this 
refers to the global object.

• The code simply iterates “this” in 
any instance on a page and 
performs a few integrity checks.

• Some filtering is required because 
iterating “this” gives us a lot of 
unnecessary variables.



Demo 4: Catching Variables Declared 
as Global Variables



Anomaly Detection

• Suspicious API call sequence.

• Unusual API call count.

• Etc.



Combining Everything

• Once the subject web page goes through several stages of our hooking routine, the detection system has to 
decide whether the page is malicious in nature. 

• The detection system can make that decision based on positive or negative results of several checks 
discussed earlier.

Decision

Shellcode

Spray

ROP

Others



Prevention and Reporting

• If the injected code finds anything malicious, it tries to grab all the 
page content (both HTML and JavaScript).

• Sends results to separate logging servers, where they can be verified 
as false positive or real exploit. 

• Once content is logged, the code immediately stops the page and 
prevents it from further loading. 

• There are several ways a page can be stopped. The system uses 
window.location = "about:blank" to flush the page content.

• Or a simple HTTP redirect will do the job.



Making the System Smarter



Making the System Smarter: Adding More 
Intelligence, Getting Rid of False Positives
• Because we are hooking JavaScript APIs—which are also used by 

legitimate web apps—the chances of false positives are very high.

• When the prototype was tested with real-world web traffic, the results 
were full of false positives and broke many web applications.

• Debugging such false-positive errors in a large-scale deployment is pretty 
difficult. 



Making the System Smarter, Continued

• An automation system was 
developed.

• Once a list of websites was fed 
into the automation, the system 
recursively crawls the sites using 
Internet Explorer.

• To see how the injected code is 
reacting to real-world web apps, 
we modified our hooking 
routines by injecting logging 
routines into almost every step. 



Making the System Smarter, Continued

• To catch and save the logging messages 
passed by the injected JavaScript 
hooking routine, we made some 
changes in Internet Explorer.

• The log() function uses the Math.atan2 
function.

• A custom DLL in every instance of 
Internet Explorer hooks (by offset) into 
jscript9!Js::Math::Atan2 and intercepts 
arguments passed to this function. 



Some Key Findings

• To test false positives, we used legitimate websites. To test false 
negatives real browser exploits were used.

• The Array() hooking routines proven to be the most powerful.

• When tested against the Metasploit framework, we found unescape() 
and escape() hooking routines catch most Metasploit exploits 
because they are widely used.

• Few other heuristics-based routines (such as API call count, suspicious 
call sequence etc. ) catch some exploits found in wild.



Using the System as a Browser Plug-In

• The JavaScript injection into the subject web page is the 
backbone of the exploit detection system.

• JavaScript can be injected in many ways.

• Web browser plug-ins can also be used to inject intrusion 
detection system JavaScript code into a web page.

• However using it as plug-ins reopen the problem of installing 
agents on the endpoint.



Dealing with HTTPS 

• SSL inspection at the corporate gateway is an old-school technique.

• This detection system can be integrated with any network inspection 
device capable of decrypting HTTPS.

Inspection 
Device

Encrypt Encrypt

Encrypt Encrypt

Decrypt Decrypt

Decrypt Decrypt Web Server



Advantages Over Current Signature-Based 
Detection Systems



Advantages: Generic in Nature

• Browser exploits are very dynamic in nature.

• One exploit can be written (or obfuscated) in many ways.

• Unlike other signature-based exploit detection systems, this 
system does not catch exploits based on already known 
tokens.



Advantages: Agentless

• In any corporate environment, deploying a system behavior 
monitoring agent is quite challenging.

• However, with this solution we can closely monitor browser 
behavior with no agent required on endpoints.



Advantages: Improves Network Monitoring 
Device Performance



Advantages: Platform Independent

• JavaScript is <3.

• The core exploit detection logic is written and based on 
JavaScript. The solution can be considered and completely 
platform independent. 



Advantages: Easy Update Shipments

N/W Monitoring Device



Limitations and Bypasses

• Security is a cat-and-mouse game.

• Anti-JavaScript API hooking

• Anti-anti-JavaScript API hooking

• ..

• ..

• And it goes on...Cheers to JavaScript Ninjas! 



Closing Remarks

• Endpoints are becoming more powerful everyday.

• JavaScript is a beautiful, powerful, and flexible language.

• JavaScript is the backbone of our exploit detection, which 
makes the system very powerful.

• On the other hand, this method gives attackers a lot of 
power to overcome security measures.



Demo 5

• Demonstration of a real browser exploit detection found in 
the wild.



Major References

• https://www.oomphinc.com/notes/2009/03/javascript-events-
runtime/

• JavaScript Hooking as a Malicious Website Research - Liran Englender
and Kris Kaspersky

https://www.oomphinc.com/notes/2009/03/javascript-events-runtime/


Thank you ☺

• Special thanks to Bing Sun and Krish Patil for their valuable 
suggestions.

• Thanks to Dan Sommer for his help with the slides.

• https://twitter.com/debasishm89

• https://github.com/debasishm89

https://twitter.com/debasishm89
https://github.com/debasishm89

