
(Re)Investigating PowerShell
Attacks

Matt Hastings, Ryan Kazanciyan

BruCON 0x0A Retro Talks

2

3

“Investigating PowerShell Attacks”, 2014 “Desired State: Compromised”, 2015

Revisiting Investigating
PowerShell Attacks

Our original research

5

Evidence in Memory

Memory footprint: PowerShell remoting

7

8

Logging

Logging in PowerShell 2.0
● PowerShell and WinRM logs

○ Start and finish of console sessions
○ Start and finish of remoting sessions (with user)

● PowerShell Analytic logs
○ Names of executed scripts and cmdlets
○ Encoded input and output of remoting sessions
○ Disabled; too verbose for ongoing usage

● AppLocker
○ Captures user and script path
○ Must create script rules in audit or enforce mode

● Transcription logging
○ Enabled on a per-profile basis
○ Do not log remoting activity

10

Example: PS Analytic logs (v2)

11

12

Invoke-Command {Get-ChildItem C:\}

Module Logging in PS v3

13

3,905 events from
one execution of
Invoke-Mimikatz

Script Block logging in PS v4 to the rescue!

14

PowerShell versus other scripting languages

15

https://blogs.msdn.microsoft.com/powershell/2017/04/10/a-comparison-of-shell-and-scripting-language-security/

PowerShell versus other scripting languages

16

17

PowerShell Attacks Today

PS attacks have been commoditized

19

20

https://github.com/danielbohannon/Invoke-Obfuscation

Defense evasions are widely-available

https://github.com/trustedsec/unicorn
https://gist.github.com/cobbr

https://github.com/danielbohannon/Invoke-Obfuscation
https://github.com/trustedsec/unicorn
https://gist.github.com/cobbr

Modern attacks still use old tricks

21

https://www.fireeye.com/blog/threat-research/2017/05/cyber-espionage-apt32.html

https://www.fireeye.com/blog/threat-research/2018/02/cve-2017-10271-used-to-deliver-cryptominers.html

Modern attacks still use old tricks

22

https://www.pwc.co.uk/cyber-security/pdf/cloud-hopper-annex-b-final.pdf

https://www.redcanary.com/blog/cryptomining-enabled-by-native-windows-tools/

23

https://www.symantec.com/blogs/threat-intelligence/powershell-threats-grow-further-and-operate-plain-sight

4%
Percentage of malicious scripts sampled in 2018 that

used any form of obfuscation

24

https://www.symantec.com/blogs/threat-intelligence/powershell-threats-grow-further-and-operate-plain-sight

Investigating .NET Attacks in 2020!

25

● Researchers moving beyond
PowerShell

● Emerging offensive toolkits
● Fewer insights into .NET execution
● More to come later in this talk...

Auditing in PowerShell v6

PowerShell 6.0 changes
● Relies on .NET Core 6.0 runtime
● Open source
● Windows, macOS, Linux support
● New shell: pwsh.exe
● Installable side-by-side with PS v5

27

PS v6 auditing in Windows
● New event Log:

PowerShellCore/Operational

● New ETW GUID:
{f90714a8-5509-434a-bf6d-b1624c8a19a2}

● New configuration files
○ $PSHOME\PowerShell.Core.Instrumentation.man
○ $PSHOME\RegisterManifest.ps1
○ $PSHOME\powershell.config.json

28

Events & EIDs unchanged from PS v5

29

powershell.config.json
1. {
2. "Microsoft.PowerShell:ExecutionPolicy": "RemoteSigned",
3. "PowerShellPolicies": {
4. "ScriptExecution": {
5. "ExecutionPolicy": "RemoteSigned",
6. "EnableScripts": true
7. },
8. "ScriptBlockLogging": {
9. "EnableScriptBlockInvocationLogging": true,
10. "EnableScriptBlockLogging": true
11. },
12. "Transcription": {
13. "EnableTranscripting": true,
14. "EnableInvocationHeader": true,
15. "OutputDirectory": "c:\\tmp"
16. }
17. },
18. "LogLevel": "verbose"
19. } 30

Enabling and disabling auditing

31

Auditing configuration changes

Command start time: 20180922134046

PS C:\Users\ryankaz\Desktop> RegisterManifest.ps1 -Unregister

32

● Not recorded in the event log
● Will be recorded in transcription logging

Audit settings in the registry
● HKLM\SOFTWARE\Policies\Microsoft\PowerShellCore

● Not impacted if you use RegisterManifest.ps1

33

System.Management.Automation/engine/PSConfiguration.cs

Command History

● Persistent command line history (similar to bash history)
%AppData%\Microsoft\Windows\PowerShell\PSReadline\Console
Host_history.txt

● (Get|Set)-PSReadLineOption

34

Revisiting DSCompromised

Desired State Configuration (DSC)

Ensure that a desired “state” of the system is maintained over time

● Download and create files and directories
● Execute processes
● Run scripts
● Create users and assign group membership
● Control Windows services
● Manage registry keys and values
● Install software

36

DSC Workflow: Author, Stage, Implement

37

Create configuration

Stage configuration
on Pull Server

Stage configuration
on Push Server

Consume and
implement

configuration
[or]

WinRM

SMB, HTTP,
or HTTPS

.MOF file

Check for config
“drift”, re-enforce as

needed

Why is DSC an interesting attacker tool?

● Obscure & flexible
persistence mechanism

● Not detected or examined
by most security tools

● Automatic re-infection if not
properly remediated

38

DSCompromised

DSCompromised Framework

● https://github.com/matthastings/DSCompromised

● PowerShell scripts to setup DSC “C2” server, build payload, infect victims

● Components:
○ Server PowerShell module

■ Configure-Server.psm1
○ Victim configuration script

■ Configure-Victim.ps1

40

https://github.com/matthastings/DSCompromised

Our approach: DSC “pull” mode

● Emulate a real C2 server
● Victim client initiates “beacon” requests via HTTP/s
● Server can be on the internet or victim’s internal network

○ Attacker-controlled server preferable
○ Significant footprint to install DSC hosting components

41

Configure DSC Pull
Server (C2 server)

Create malicious
configuration to host

on Pull Server

Consume and
implement config
on victim host(s)HTTP/s

New-Payload Configure-Victim.ps1Configure-Server.psm1
New-User

Persist Malware

● Infect victim machine with
backdoor malware

● Ensure the malware continues
to execute and remain on disk

● Re-infect victim automatically if
remediated

Payloads we implemented

42

Persist User Account

● Create a local account with
your choice of password

● Ensure user is a member of a
specific group, such as local
administrators

● Automatically re-add account
and restore group membership
if deleted or changed

Sources of evidence

43

Network activity

44

HTTP requests used in DSC “pull” configuration

POST
/psdscpullserver.svc/Action(ConfigurationId='a8540639-cd47-4
62d-ae75-415158f60a99')/GetAction

GET
/psdscpullserver.svc/Action(ConfigurationId='a8540639-cd47-4
62d-ae75-415158f60a99')/ConfigurationContent

Configure-Victim
script creates pull

setup MOF

System creates
initial LCM meta

config

Task Manager creates
DSC Consistency and

Boot Tasks

File system activity

System creates
temp copy of
downloaded

“payload” MOF

Current and backup
config set to

“payload” MOF

Malware dropped by
payload MOF

Event logs: DSC Operational

46

State of DSC Attacks
in 2018

47

[slide intentionally left blank]

Revisiting DSC’s limitations

● Difficult to learn and use

● Requires PS 4.0 on victim
○ Windows 8.1, Server 2012 R2 and later

● Requires Admin privileges on victim host
○ Post-compromise persistence

51

52

53

54

DSC → DSC Core
● DSC continues to receive updates, increasingly important for Azure

● Next-gen: DSC Core
○ Converge to a single cross-platform, open-source code base
○ Removes dependencies on WMI and WMF
○ New Local Configuration Manager
○ Resources written in native C/C++, Python, or PowerShell Core

● Release date remains TBD
○ https://blogs.msdn.microsoft.com/powershell/2018/09/13/desired-state-configuration-dsc-plann

ing-update-september-2018/

55

https://blogs.msdn.microsoft.com/powershell/2018/09/13/desired-state-configuration-dsc-planning-update-september-2018/
https://blogs.msdn.microsoft.com/powershell/2018/09/13/desired-state-configuration-dsc-planning-update-september-2018/

Logging with ETW

ETWhat?

● Introduced in Windows 2000

● Application / kernel tracing

○ Troubleshooting

○ Performance monitoring

● Hiding in plain sight

57

58

59

Kernel-Process DLL loads

Process
execution

Kernel-NetworkThreads

Kernel-File

PowerShell

DNS-Client

Scriptblocks

PS Modules

DNS requests /
responses

File create /
delete

Network
connections

ETW Orchestration

● https://github.com/matthastings/PSalander

● PowerShell module to orchestrate ETW sessions

● Impacted by PS logging evasions

● Out-of-the box forensic collection

● Useful beyond PS

60

https://github.com/matthastings/PSalander

Demo

61

.NET Visibility
● Microsoft-Windows-DotNETRuntime
● [SharpSploit.Credentials.Mimikatz]::All()

62

63

Takeaways

64

Takeaways

● Despite advances in attacker tradecraft, PowerShell provides defenders
with better auditability than any other language

● Establishing a baseline for legitimate PowerShell activity across an
environment makes detection significantly easier

● ETW will continue to serve as a goldmine for telemetry as new techniques
emerge (“there’s a provider for that!”)

65

Thank you!

matt.hastings [at] tanium.com
@_mhastings_

ryan.kazanciyan [at] tanium.com
@ryankaz42

66

mailto:matt.hastings@tanium.com
mailto:ryan.kazanciyan@tanium.com

