
Finding 0 Days in Embedded Systems

Brucon, October 2018

with Code Coverage Guided Fuzzing

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- theshepherd.io

About NGUYEN Anh Quynh

> Nanyang Technological University, Singapore

> PhD in Computer Science

> Operating System, Virtual Machine, Binary analysis, etc

> Usenix, ACM, IEEE, LNCS, etc

> Blackhat USA/EU/Asia, DEFCON, Recon, HackInTheBox,

Syscan, etc

> Capstone disassembler: http://capstone-engine.org

> Unicorn emulator: http://unicorn-engine.org

> Keystone assembler: http://keystone-engine.org

About KaiJern

Founder of

hackersbadge.com, RE &&

CTF fan

Reverse Engineer

Badge Maker

> Reversing Binary

> Reversing IoT Devices

> Part Time CtF player

Hack in the box, Netherland

and Singapore. Soon to be

Beijing and Dubai

HITB

Security Conference

> 2006 till end of time

> Core Crew

> Review Board

> 2005, HITB CTF, Malaysia, First Place /w 20+ Intl. Team

> 2010, Hack In The Box, Malaysia, Speaker

> 2012, Codegate, Korean, Speaker

> 2015, VXRL, Hong Kong, Speaker

> 2015, HITCON Pre Qual, Taiwan, Top 10 /w 4K+ Intl. Team

> 2016, Codegate PreQual, Korean, Top 5 /w 3K+ Intl. Team

> 2016, Qcon, Beijing, Speaker

> 2016, Kcon, Beijing, Speaker

> 2016, Intl. Antivirus Conference, Tianjin, Speaker

> MacOS SMC, Buffer Overflow, suid

> GDB, PE File Parser Buffer Overflow

> Metasploit Module, Snort Back Oriffice

> Linux ASLR bypass, Return to EDX

Day Time Job, breaking

things and earning salary

from a Fortune 500

company, JD.COM

The Shepherd Lab

> IoT Research

> Blockchain Research

> Fun Security Research

> 2017, Kcon, Beijing, Trainer

> 2017, DC852, Hong Kong, Speaker

> 2018, KCON, Beijing, Trainer

> 2018, DC010, Beijing, Speaker

> 2018, Brucon, Brussel, Speaker

> 2018, H2HC, San Paolo, Brazil

> 2018, HITB, Beijing/Dubai, Speaker

> 2018, beVX, Hong Kong, Speaker

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

Fuzzing

> Automated software testing technique to find bugs

> Feed craft input data to the program under test

> Monitor for errors like crash/hang/memory leaking

> Focus more on exploitable errors like memory corruption,

info leaking

> Maximize code coverage to find bugs

> Blackbox fuzzing

> Whitebox fuzzing

> Graybox fuzzing, or Coverage Guided Fuzzing

Coverage-guided Fuzzer

> Instrument target binary to collect coverage info

> Mutate the input to maximize the coverage

> Repeat above steps to find bugs

> Proved to be very effective

> Easier to use/setup & found a lot of bugs

> Trending in fuzzing technology

> American Fuzzy Lop (AFL) really changed the game

Guided Fuzzer for Embedded

> Guided fuzzer was introduced for powerful PC systems

> Bring over to embedded world?

> No support for introducing new tools

> Not open source

> Lack support for embedded hardware

Issues

Restricted

System

Closed

System

Lack Support

for Embedded

> Binary only - without source code

> Existing guided fuzzers rely on source code

available

> Source code is needed for branch

instrumentation to feedback fuzzing

progress

> Emulation such as QEMU mode

support in AFL is slow & limited in

capability

> Same issue for other tools based on

Dynamic Binary Instrumentation

> Without built-in shell access for user

interaction

> Without developement facilities

required for building new tools

> Compiler

> Debugger

> Analysis tools

> Most fuzzers are built for X86 only

> Embedded systems based on

Arm, Arm64, Mips, PPC

> Existing DBIs are poor for non-X86

CPU

> Pin: Intel only

> DynamoRio: experimental

support for Arm

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

The SoC

➢ Scale Down from PC

➢ System on Chip

➢ A chip with all the PCI-e slot and card in it

➢ Pinout to different parts

➢ Wifi, Lan, Bluetooth and etc

➢ Low power device

Requirement

Hardware + GNU Command

also

love hardware and not only hardware hacking

Once you cross over, there are things in the

darkness that can keep your heart from

feeling the light again

Getting Firmware

c

c

c

Firmware and Hardware

Extract From Flash , Extract From APK, Traffic Sniffing or Just Download

Technically 1. Download 2. Patch with Backdoor 3. Flash 4. pwned

If we need more ?

1. RCE 2. Fuzz

The Easy Way

Complete Kit to Success

MIPS ARM AARCH64

Classic LIBC Issue
How Many Dev Board

The Hackers Way: Virtualization

More Resources = More Power

Processor RAM FLASH

Most Important, we got apt-get

Multicore MAX RAM MAX Space

Normally 1-2 Core
Normally

256MB/512MB

Normally

8MB/16MB/32MB/256MB

Objectives

Only Need One Process to Run

Since only one binary, do we really need qemu-system or just use good old qemu-static

Hunt for the one that spawn

listener port
Hunt for the one that spawn

services

Booting Up

Current Solution

Leaving squashfs and going into a unknown world

Old vs New

argument: running new or old distro + kernel + hypervisor

script to boot mips

2016 way

Easy Way Out, chroot

chroot is easy (still hardware dependent), but we will have issue with tools

Running without chroot

Classic Case: File Not Found

Now You See It

We found you

We Missed You

The Answer

We found you

We Missed You

The missing .SO and binary Issue

Out from chroot, we need feeding

Feeding all the required so and binary with “ln –s”

Out from chroot, we need feeding

“segfault” without clear error. strace come to rescue

Classical file not found error

The Secretive NVRAM

reply with

nvram info

Dark Side of NVRAM

ask for nvram info

main process

Relationship between main binary is so intimate,

but in actual fact. Is just a hit and run

Dark Side of the main process, we ignore and con’t to next step

interactor

A Fake NVRAM

ask for nvram info

main process

interactor

IF interactor is the medium,

can we fake it ?

reply with

nvram info

Custom Interactor

Wireless Device

Faking wpa_supplicant

making eth0 looks like wlan0 works too

Everything Things Else Fail

jmp, cbz, cbnz and Friends

Original BIN Patched BIN

Argument: To Patch or To Fulfill Firmware Needs

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

Issues

> Binary only - without source code

> Existing guided fuzzers rely on source code

available

> Source code is needed for branch

instrumentation to feedback fuzzing

progress

> Emulation such as QEMU mode support in

AFL is slow & limited in capability

> Same issue for other tools based on

Dynamic Binary Instrumentation

> Without built-in shell access for user

interaction

> Without developement facilities required for

building new tools

> Compiler

> Debugger

> Analysis tools

> Most fuzzers are built for X86 only

> Embedded systems based on Arm,

Arm64, Mips, PPC

> Existing DBIs are poor for non-X86 CPU

> Pin: Intel only

> DynamoRio: experimental support for

Arm

Firmware

Emulation

Closed

System

Lack Support

for Embedded

Dynamic Binary Instrumentation (DBI)

making eth0 looks like wlan0 works too

DBI Illustration

making eth0 looks like wlan0 works too

DBI Techniques

making eth0 looks like wlan0 works too

Hooking Mechanisms - Inline

making eth0 looks like wlan0 works too

Hooking Mechanisms - Detour

making eth0 looks like wlan0 works too

Detour Injection Mechanisms

making eth0 looks like wlan0 works too

Jump-trampoline Technique

making eth0 looks like wlan0 works too

Jump-callback Technique

making eth0 looks like wlan0 works too

Call-trampoline Technique

making eth0 looks like wlan0 works too

Call-callback Technique

making eth0 looks like wlan0 works too

Problems of Existing DBI

making eth0 looks like wlan0 works too

SKORPIO Framework

making eth0 looks like wlan0 works too

SKORPIO Architecture

making eth0 looks like wlan0 works too

Cross Platform - Memory

making eth0 looks like wlan0 works too

Cross architecture - Save/Restore Context

making eth0 looks like wlan0 works too

Cross Architecture - Callback argument

making eth0 looks like wlan0 works too

Cross Architecture - Branch distance

making eth0 looks like wlan0 works too

Cross Architecture - Branch for PPC

making eth0 looks like wlan0 works too

Cross Architecture - Scratch Register

making eth0 looks like wlan0 works too

Cross Architecture - Flush Code Cache

making eth0 looks like wlan0 works too

Code Boudary & Relocation

making eth0 looks like wlan0 works too

Code Analysis

making eth0 looks like wlan0 works too

Customize on Instrumentation

making eth0 looks like wlan0 works too

Skorpio Sample C Code

making eth0 looks like wlan0 works too

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

Issues

> Binary only - without source code

> Existing guided fuzzers rely on source code

available

> Source code is needed for branch

instrumentation to feedback fuzzing

progress

> Emulation such as QEMU mode support in

AFL is slow & limited in capability

> Same issue for other tools based on

Dynamic Binary Instrumentation

> Without built-in shell access for user

interaction

> Without developement facilities required for

building new tools

> Compiler

> Debugger

> Analysis tools

> Most fuzzers are built for X86 only

> Embedded systems based on Arm,

Arm64, Mips, PPC

> Existing DBIs are poor for non-X86 CPU

> Pin: Intel only

> DynamoRio: experimental support for

Arm

Firmware

Emulation

Skorpio

DBI

Lack Support

for Embedded

Fuzzer Features

making eth0 looks like wlan0 works too

Fuzzer Design

making eth0 looks like wlan0 works too

Fuzzer Implementation

making eth0 looks like wlan0 works too

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

Exploiting a RCE

making eth0 looks like wlan0 works too

Coverage Guided Fuzzer vs Embedded Systems

Agenda

Emulating Firmware

Guided Fuzzer for Embedded

Skorpio Dynamic Binary Instrumentation

DEMO

Conclusions

Issues

> Binary only - without source code

> Existing guided fuzzers rely on source code

available

> Source code is needed for branch

instrumentation to feedback fuzzing

progress

> Emulation such as QEMU mode support in

AFL is slow & limited in capability

> Same issue for other tools based on

Dynamic Binary Instrumentation

> Without built-in shell access for user

interaction

> Without developement facilities required for

building new tools

> Compiler

> Debugger

> Analysis tools

> Most fuzzers are built for X86 only

> Embedded systems based on Arm,

Arm64, Mips, PPC

> Existing DBIs are poor for non-X86 CPU

> Pin: Intel only

> DynamoRio: experimental support for

Arm

Firmware

Emulation

Skorpio

DBI

Guided

Fuzzer for Embedded

Conclusions

making eth0 looks like wlan0 works too

Questions

NGUYEN Anh Quynh, aquynh -at- gmail.com

KaiJern LAU, kj -at- theshepherd.io

Finding 0 Days in Embedded Systems
with Code Coverage Guided Fuzzing

@sgniwx

