Finding O Days in Embedded Systems
with Code Coverage Guided Fuzzing

Brucon, October 2018

NGUYEN Anh Quynh, aquynh -at- gmail.com
KaiJern LAU, kj -at- theshepherd.io

About NGUYEN Anh Quynh

> Nanyang Technological University, Singapore

> PhD in Computer Science

> Operating System, Virtual Machine, Binary analysis, etc
> Usenix, ACM, IEEE, LNCS, etc

> Blackhat USA/EU/Asia, DEFCON, Recon, HackinTheBox,
Syscan, etc

> Capstone disassembler: http://capstone-engine.org

> Unicorn emulator: http://unicorn-engine.org

> Keystone assembler: http://keystone-engine.org

About Kaidern

@ R
HACKERSBADGE.COM
The Shepherd Lab Reverse Engineer HITB
Badge Maker Security Conference

Day Time Job, breaking

things and earning salary Founder of Hack in the box, Netherland

from a Fortune 500 hackersbadge.com, RE && and Singapore. Soon to be

company, JD.COM CTF fan Beijing and Dubai

> loT Research > Reversing Binary > 2006 till end of time

> Blockchain Research > Reversing loT Devices > Core Crew

> Fun Security Research > Part Time CtF player > Review Board

\\ / \\ / The Shepherd Lab
4 o . N
> 2005, HITB CTF, Malaysia, First Place /w 20+ Intl. Team > 2017, Kcon, Beijing, Trainer - MacOS SMC, Buffer Overflow, suid
> 2010, Hack In The Box, Malaysia, Speaker > 2017, DC852, Hong Kong, Speaker . GDB, PE File Parser Buffer Overflow
> 2012, Codegate, Korean, Speaker > 2018, KCON, Beijing, Trainer . Metasploit Module, Snort Back Oriffice
> 2015, VXRL, H K 'S k > 2018, DC010, Beijing, Speak .
Ong Kong, Speaxer eUing, Speaker > Linux ASLR bypass, Return to EDX

> 2015, HITCON Pre Qual, Taiwan, Top 10 /w 4K+ Intl. Team > 2018, Brucon, Brussel, Speaker
> 2016, Codegate PreQual, Korean, Top 5 /w 3K+ Intl. Team > 2018, H2HC, San Paolo, Brazil
> 2016, Qcon, Beijing, Speaker > 2018, HITB, Beijing/Dubai, Speaker
> 2016, Kcon, Beijing, Speaker > 2018, beVX, Hong Kong, Speaker
> 2016, Intl. Antivirus Conference, Tianjin, Speaker

Coverage Guided Fuzzer vs Embedded Systems

[start]

\ 4

testcase
generation
- { N

> Automated software testing technique to find bugs

program
execution

o

> Feed craft input data to the program under test

> Monitor for errors like crash/hang/memory leaking

> Focus more on exploitable errors like memory corruption,
info leaking

Maximize code coverage to find bugs

\"

v

Blackbox fuzzing

\"

Whitebox fuzzing

Graybox fuzzing, or Coverage Guided Fuzzing

\"

Coverage-guided Fuzzer

Instrumentation

> Instrument target binary to collect coverage info
> Mutate the input to maximize the coverage
> Repeat above steps to find bugs
> Proved to be very effective
> Easier to use/setup & found a lot of bugs
> Trending in fuzzing technology
> American Fuzzy Lop (AFL) really changed the game

Guided Fuzzer for Embedded

> Guided fuzzer was introduced for powerful PC systems
> Bring over to embedded world?

> NoO support for introducing new tools

> Not open source

> Lack support for embedded hardware

Issues

24K Core Architecture
Alping: J5a GPH, BT, SP1, USAT

* 24Kc™ Core: This base core
includes a high-performance
32x32 multiply/divide unit and
configurable MMU with TLB or
fixed mapping.
* 24KEc™ Core: This core
adds the MIPS DSP ASE to the
foundation capabilities of the
24K series.

* 24Kf/24KEf™ Cores: Include
a hardware floating point unit that
is fully compliant with IEEE 754.

* 24K/24KE™ Pro Cores:
Pro series cores feature the
CorExtend™ capability for user
defined instructions

W e e m

Restricted

System

Lack Support
for Embedded

> Without built-in shell access for user
interaction

> Binary only - without source code

> Existing guided fuzzers rely on source code
> Without developement facilities available

required for building new tools > Source code is needed for branch

instrumentation to feedback fuzzing
progress

> Compiler

> Debugger

> Emulation such as QEMU mode
support in AFL is slow & limited in
capability

> Analysis tools

> Same issue for other tools based on
Dynamic Binary Instrumentation

> Most fuzzers are built for X86 only

> Embedded systems based on
Arm, Arm64, Mips, PPC

> Existing DBIs are poor for non-X86
CPU

> Pin: Intel only

> DynamoRio: experimental
support for Arm

Emulating Firmware

The SoC

USB etc.

MT7603E P
P i
MT7621A TraN \umeq Lan

MT7612E P

Option Option

> Scale Down from PC > Pinout to different parts
> System on Chip > Wifi, Lan, Bluetooth and etc

> A chip with all the PCI-e slot and card in it > Low power device

Requirement

WAN WAN

LAN x4
1000M @ 1000M
bps fie 1000Mbps

TR I I
| Expansion Ports
TS (USB2.0, 12S, UART,

SATA3.0

P o UART
: Debug Port

2.4G Antenna 3 5G Antenna

Connector Connector

Hardware + GNU Command

also
love hardware and not only hardware hacking

Once you cross over, there are things in the
darkness that can keep your heart from
feeling the light again

Getting Firmware

Firmware and Hardware

) shadow-1/ © Watch 14
VR Mirrorless Action Home Dash Accessories Support
Overview Features Specs Firmware & App YIHc
. _ ¢» Code (1) Issues 149 i) Pull requests 1 Projects 0 11 Insights
Firmware : B I Proj 1l Insig
Outdoor Camera E:l
Join GitHub today
3.0.00C_201807181926 v GitHub is home to over 28 million developers working together to host

and review code, manage projects, and build software together.

DOWNLOAD

Version:3.0.0.0C_201807181926 m

Release date:07/18/2018

Alternative Firmware for Cameras based on Hi3518e Chipset

Home Camera
D 30 commits P 1 branch > 7 releases

Extract From Flash , Extract From APK, Traffic Sniffing or Just Download

Technically 1. Download 2. Patch with Backdoor 3. Flash 4. pwned

E| .gitignore Created initial Makefiles and config files for Yi Home support.
[E] README.md Added ability to have programs and libraries reside on the microSD card.
[E] download_proxy_list.png Changed FTP server to Pure-FTPd.

El download_proxy _list_ completed_ex... Changed FTP server to Pure-FTPd.
28,

25,

README.md

If we need more ?

1. RCE 2. Fuzz

The Easy Way

Complete Kit to Success

Alpins: e GPHD, KT, 5P, LWSAT

AARCHG64

How Many Dev Board Classic LIBC Issue

The Hackers Way: Virtualization

More Resources = More Power

Processor

Normally Normally

Most Important, we got apt-get

Objectives

Active Internet connections (servers and established)

MAC Address

P

Proto Recv-Q) Send-Q Local Address Foreign Address State PID/Program name
» Setup top @ @ 0.0.0.0:9000 LISTEN 615/ucloud_v2
» USB Storage top @ 172.27.175.218:80 LISTEN 715/dhttpd
» Security - top @ 10.10.118.248:80 LISTEN 613/httpd
T top @ 127.0.0.1:10002 LISTEN 615/ucloud_v2
eTE—— top @ 127.0.0.1:10003 LISTEN 615/ucloud_v2

LISTEN 457/busybox
LISTEN 616/business_proc
LISTEN 450/nginx
LISTEN 821/miniupnpd
@ 127.9.0.1:8188 LISTEN 453/ app_data_center
@ 127.9.0.1:10004 127.9.09.1:53581 ESTABLISHED 616/business_proc
9 127.9.0.1:32839 127.9.0.1:10003 ESTABLISHED 6l16/business_proc
@ 127.9.0.1:10003 127.9.9.1:32839 ESTABLISHED 615/ucloud_wz
@ 127.9.0.1:53581 127.9.0.1:10004 ESTABLISHED 616/business_proc
/proc/net/tcpb: No such file or directory
] @ 19.19.118.248:53 ©93/dnrd
0 0.0.0.0:1900 821/miniupnpd
617/auto_discover
821/miniupnpd
9 0.9.9.0:5353 617/auto_discover
@ 10.10.118.248:36603 821/miniupnpd
/proc/net/udp6: No such file or directory
/proc/net/rawe: No such file or directory
Active UNIX domain sockets (servers and established)

tected Setup

Booting Up

Current Solution

soogle emulating firmware $ Q
ANl Vidsos Images News Shopping More Setings Toals
& firmadyne / firmadyne
Getting started with Firmware Emulation for loT Devices
Jan 28, 2018 - Firmware Emulation can serve a number of dfferent purposes such as analyzing the <> Code (D Issues 44

fimware n & better way, performing explofation

Emulating and Exploiting Firmware binaries - Offensive loT ...

Jul 5, 2016 - Weicome to the third post in the “Offenswe loT Expiottation” senes. In the prewious one, we
leamed 850Ut how we can get started with analyzing

Vilace D 55 commits

19 Pull requests 3

¥ 1branch

[Projects o [Wiki

System for emulation and dynamic analysis of Linux-based firmware

© 0 releases

@ Watch~ = 69 Y Star | 590 ¥ Fork | 151

[l Insights

23 4 contributors afs MIT

Branch: master v

loT This Week | Firmware Analysis Emulating smart plug >

Fimware emulation Toolkit by Attify - firmware using Attfy's . .
with QEMU Emulating loT device Firmware Analysis ddcc fix tar2db.py, close #84
firmware Toolkit
Craig Sman Aty - Semgiityng Secunty Aty - Simpitying Securdy | analyses
YouTube - May 31, 2016 YouTude - Nov 3, 2016 YouTube - Nov 3, 2016
I binaries
Emulating and Exploiting Firmware binaries by Aditya Gupta ... - Peerlyst
itps:/ww.peertyst.com » Explore » Posts »
Jun 25, 2017 - Envulating and Explofing Firmware binaries. This the hrd past he “Offensive laT I database
- " ——
GitHub - System for emulation and dynamic .. B images
hitps:/igithub comMimacyne/fimacyne v
Systom for emulation snd dynamic analysis of Laux-based irmware - fmadyne(Timadyno B8 paper
GitHub - attify/firmware-analysis-toolkit: Toolkit to emulate firmware ...
hitps:igithub.comattfy fmware-analysis-toolkt v i script
Toolki 1 ansiyse i for securlty attty temware- analysss-toolkit scripts
Network support when emulating :’Lrynware with QEMlMJA-Ravlerse; . B sources
Tar
117 - Use e -net argument -net i, model=riB139 Of course replace 113139 with your P
network davce mode (61000, 82551, 82557,) Furher = .gitignore
Emulating Non-Linux Firmware Image of Embedded Devices - Reverse ... @ gitmodules
Tan
Fob 8, 2017 - It s possible, but emulating the raw bin f s aimost 1o work unless ifs laid
ot axacy e s GEMU platomyouro g [E) LICENSE.txt
Emulating Embedded Linux Systems with QEMU | Novetta @ README.md

Fab 26, 2018 - in the first post, Emulating Embedded Linux Applications with QEMU, we _ Extract the.
Kemel from he device firmware. create 3 foolts image

[download.sh

Images for emulating firmware

[&) firmadyne.config

> More mages for emuiating firmware Repo smages

New pull request

fix typo, close #19

initial import

initial import

initial import

initial import

fix tar2db.py, close #84

update submodules

Update README, gitignore
initial import

initial import

readme: use gfw-safe links for chinese users
update script to libnvram v1.0c

Minor bug fixes and cleanups

Create new file = Upload files = Find file Clone or download ¥

Latest commit 1a63d21 on Aug 3

2 years ago
3 years ago
3 years ago
3 years ago
3 years ago
2 months ago
2 months ago
2 years ago
3 years ago
3 years ago
5 months ago
2 months ago

2 years ago

Leaving squashfs and going into a unknown world

Zipato RainMachine

. Dlink 9301

armel

mips

056 QeMu

(
[
[
(
(

V't support DFO o
{ 4.880000)
2016-02-01
0] Initalizing netuork drop mo
40001 sd 0:0:0:0: [sda] Attached

4000] EXT3-fs: INFO: re
20001 EXT3-fs: write ac

o) 4591210

loT This Week | Firmware emulation with QEMU

Dlink_DIR 601

2800 Jot: ~/Desktop/mip:
craigz28@ubuntu-iot:~/Desktop/mipss cat /etc/network/interfaces
interfaces(5) file used by ifup(8) and ifdown(8)

auto lo

iface lo inet loopback

auto bre
bridge ports ethd
bridge maxwait 0
craigz28@ubuntu-1ot:~/Desktop/nipss

w2 -append "root=/dev/sdal console=t
Executing /etc/qenu-ifu

-net nic -net tay

Bringing up tapé for bridged mode. ..
Adding tape to bre...

28 craigz28 3735636 Nov 15 2012 dir601 revB FW 201.bin
4096 Jan 29 15:51 fak

buntu-1ot:~/Desktop/Dlink DIR 6015 cd fmk/

buntu-iot:~/Desktop/Dlink DIR 601/fmk$ 1s
craigz28@ubuntu-iot:~/Desktop/Dlink DIR 601/fmk$ cd rootfs/
craigz28eubuntu-iot:~/Desktop/Dlink DIR_601/fmk/rootfss ls -1
total 6
drwxr-xr-x 2 root root 4696 Feb 16 2012 bin
drwxrwxrwx 3 root root 4696 Feb 18 2012
drwxrwxrwx 3 root root 4696 2018
drwxrwxrwx 4 root root 4096 2012
draxr-xr-x 3 root 4096 2012 Uibexec
Lrwxrwxrwx 1 12:20 Llinuxrc -> bin/busybox
drwXrwxrwx 4096 008
ArwXrwxrwx 4096
draxrwxr 4096
drwxrwxrwx 2 4096
drexr-xr-x 4996
drwxrocne 4996

4096
t root 4696 Nov

4601

To release your mouse press: Cor 0 -3
< B % @) 617PM

genu-systen-nips -M malta -kernel vmlinux-2.6.32-5-4kc-malta -hda debian squeeze mips standard.qco

sudo

screen

psel/vmlinux-4.

.qcow2 nic

sudo
sudo

sudo

tunctl tape
ifconfig tap®e .

sysctl

iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables
iptables

iptables
iptables
iptables

iptables
.11:2
iptables

/opt/qemu/bin/qemu-system-mipsel
.8-4-4kc-malta

=no

xwings

nat

nat

mangle

mangle

INPUT ACCEPT
FORWARD ACCEPT
OUTPUT ACCEPT

nat POSTROUTING
FORWARD tape
FORWARD tape

nat PREROUTING

nat

c .11:80

iptables

nat PRERQUTING

5 .11:443

malta
boot.stretch.mipsel/initrd.img-4.

debian-stretch.mip

nic

netmask

ens33
ACCEPT
state

MASQUERADE

RELATED, ESTABLISHED

ens33
CLEEE]

CLHEEE]

boot.stretch.mi
.8-4-4kc-malta
sel

ACCEPT

Easy Way Out, chroot

1 Answer

- | gdb chroot DRy e odeet | vos Debugging firmware images that aren't successfully
emulated #/16

[@LIEL N prashast opened this issue on Apr 29, 2017 - 11 comments

All Images Videos News Shopping More Settings Tools ‘You can use remote debugging:

About 63,500 resuls (0.40 secands) 2 In the Just your usual runtime plus the program gdbserver . Then run:

c++ - Debug chrooted program with gdb - Stack Overflow chroots gdbserver 18335 myprogram

?tgiz:‘g::ackoverﬂcw.comlquestlunsl33695551fuebug{:nrmled—program—wllhgdb v V In the development environment, from the source directory you run gds and connect it fo the ! prashast commented on Apr 29, 2017 oo i
Nov 13, 2015 - You can use remote debugging In the chroot you need just your usual runtime plus the senver . r
program gdbserver . Then run: chroot$ gdbserver :8888 .. R . . B .
gdb - How to dsbug binaries from a MIPS firmurare 8 Apr 2018 $ gdb myprogram Hey @ddcc, | had a question regarding the debugging framewark for binaries that aren't successfully
linux - Use UDP port for GDB connection in Eclipse 1 Nov 2016 (gdb) target remote :8833 emulated. | wanted to remotely debug z web server binary that was running as a part of the emulation but | 1
gclipse - Is it possible to have mulliple connections to gdbserver ... 7 Aug 2016 . was having trouble connecting to the gdb stub that | was running in QEMU. Do you have any pointers on as
Eclipse GDB running inside Chroot environment 18 Aug 2014 And you can start debugging. R t
More results from stackoverflow.com to how you go about debugging these binaries?
| like to do br main before continue because the debugger will be stopped in _start | too early to

Debugging with GDB - Sourceware be useful F
htips:/iwww. X ‘gdb_html B ~ R . N .
This is the Tenth Edition, of Debugging with GDB: the GNU Source-Level (gdb) catch syscall PS: Be aware of the security concerns when using remote debugging, as the 8888 is a listening ddcc commented on Apr 29, 2017 Collaborator ==+ v
chroot Catchpoint 1 (syscall 'chroot’ [61]) (gdb) r Starting ... TCP port.
Getting In and Qut of GDB - GDB Commands - Running Programs Under ...

Unfortunately, debugging system-mode QEMU is a pain, so | try to avoid it, and substitute with r

chroot is easy (still hardware dependent), but we will have issue with tools

running Gentoo with gec 4.2.0 {for which there is no gdc ..

find pre-compiled binaries online. Also, if you have access to |DA Pro, it comes with its own pre-compiled
Tinkering Is Fun: Debugging non-native programs with QEMU + GDB debug stubs (not GDB-compatible) in the install directory.

tinkering-is-fun blogspat com/2009/__fdebugging-non-native-programs-with-gemu ht__ v
Dec 14, 2009 - Debugging non-native programs with QEMU + GDB . curious enough, you might have
tried running GDB within your (say) ARM Debian chroot. S

Debugging firmware images that aren't successfully emulated - Issue ...
https://github.com/firmadyne/firmadyne/issues/46 +

Apr 28, 2017 - I've set up a bind mount of the /proc inside the chroot because gdb complained that it
wasn't able to read the proc entry of the pid that was __

Running without chroot

Classic Case: File Not Found

1ib64# file ../bin/bash
../bin/bash: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically linked, interprete
r /1ib64/1d-1inux-aarch64.so0.1, for GNU/Linux 3.14.0, BuildID[shal]=22e2854c58b1814825b95cbal®3ac658d
371f5b0, stripped

chdir("/™) =0

execve("/bin/bash", ["/bin/bash", "-i"], Oxffffcal4f650 /* 18 vars */) = -1 ENOENT (EJEMey file or d
irectory)

openat(AT_FDCWD, "/usr/lib/aarch64-linux-gnu/charset.alias", O_RDONLY|O_NOFOLLOW) = -1 ENOENT (RNl
i file or directory)

write(2, "chroot: ", 8chroot:) = 8

write(2, "failed to run command '/bin/bash'", 33failed to run command '/bin/bash') = 33

write(Z2, ": file or directory", 27: file or directory) = 27

write(2, "\n", 1

) N |

close(l)

close(2)

exit_group(127)

1ib64# file ../bin/bash
../bin/bash: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically linked, interprete
r /1ib64/1d-1inux-aarch64.so0.1, for GNU/Linux 3.14.0, BuildID[shal]=22e2854c58b1814825b95cbal®@3ac658d
371f5b0, stripped

chdir("/™) =0

execve("/bin/bash", ["/bin/bash", "-i"], Oxffffcal4f650 /* 18 vars */) = -1 ENOENT (EJEMey file or d
irectory)

openat(AT_FDCWD, "/usr/lib/aarch64-linux-gnu/charset.alias", O_RDONLY|O_NOFOLLOW) = -1 ENOENT (RNl
i file or directory)

write(2, "chroot: ", 8chroot:) = 8

write(2, "failed to run command '/bin/bash'", 33failed to run command '/bin/bash') = 33

write(Z2, ": file or directory", 27: file or directory) = 27

write(2, "\n", 1

) N |

close(l)

close(2)

exit_group(127)

The missing .SO and binary Issue

pid 2680] close(4) =0

pid 2680] write(1l, "<dhcpc script>no udhcpc pid can be killed, but udhcpc id is ", 60) = 60

pid 2680] newfstatat(AT_FDCWD, "/usr/local/sbin/ps", Oxfffffe@81a30, 0) = -1 ENOENT ((EYESMER file
directory)

pid 2680] newfstatat(AT_FDCWD, "/usr/local/bin/ps", Oxfffffe081a30, @) = -1 ENOENT (LY file d
directory)

pid 2680] newfstatat(AT_FDCWD, "/usr/sbin/ps", Oxfffffe081a30, @) = -1 ENOENT ((EJEME file or di

newfstatat(AT_FDCWD, "/usr/bin/ps", Oxfffffe@81a30,) = -1 ENOENT (JEJREME file or dirg
newfstatat(AT_FDCWD, "/sbin/ps", Oxfffffe081a30, @) = -1 ENOENT (JEJENMER file or directd

newfstatat(AT_FDCWD, "/bin/ps", {st_mode=S_IFREGI|Q755, st_size=535832, ...}, @) =0
pipe2([4, 71, @) =0
clone(strace: Process 2681 attached

Usage: unzip [-lnopq] FILE[.zip] [FILE] [-x FILE] [-d DIR] root@ 2/u5r/li664# -5 libgnutls.so.B@.QT@ Iibgnutis.so.B@
root@aarch64: /opt 2/bin# 1n -s busybox.nosuid unzip root@ D /usr/1ib64# -s libidn.so0.11.6.16 libidn.so.11
root@aarch64: /opt 2/bin# ./busybox.nosuid sync root@ P /usr/1ib64# -5 libnettle.so0.6.2 libnettle.so0.6
root@aarch64: /opt 2/bin# ./busybox.nosuid syn root@ D /usr/1ib64i# -s libhogweed.so0.4.2 libhogweed.so.4
syn: applet not found

root@ D /usr/1ib64# -s libgmp.s0.10.3.1 libgmp.so0.10
r‘oot@aar‘ch64:/opt/-2/bin# In -s busybox.nosuid sync root@ D /usr/1ib64i -s libpcre.so.1.2.7 libpcre.so.1

2/binit root@ D /usr/1ib64d# -5 libexpat.so.1.6.2 libexpat.so.1
root@ 2/usr/1ib64# I

root@aarch64: /opt/|

Ry T MR i

bash-3.2# /usr/bin/appmainprog

appmain>**

appmain>child process id is 3931
appmain>Appcliation Init Begin
appmain>Audio Mas process Init
[Aud][PPC] AudioPPCControl constructor
[Aud][PPC] AudioPPCControl getInstance
[Aud][PPC] AudioPPCControl freelnstance

[Aud][PPC] AudioPPCControl destructor
[Aud][PPC][deInit] PPC deinit begin.

[Aud][PPC] [ppcStructUnalloc] ppc_destroy_info begin.
Segmentation fault

close(3) =0

write(1l, "<appmain>Appcliation Init Begin\n", 3Z2<appmain>Appcliation Init Begin

) =32

write(1, "<appmain>Audio Mas process Init\n", 32<appmain>Audio Mas process Init

) =32

umask(@0@) = 022

faccessat(AT_FDCWD, "/data/log_all", F_OK) = -1 ENOENT (file or directory)

socket(AF_UNIX, SOCK_DGRAMISOCK_CLOEXEC, @) = 3

connect(3, {sa_family=AF_UNIX, sun_path="/dev/log"}, 110) = -1 ENOENT (JEJEEWea file or directory)

close(3) =0

write(1, "[Aud][PPC] AudioPPCControl constructor\n", 39[Aud][PPC] AudioPPCControl constructor

) =39

write(1, "[Aud][PPC] AudioPPCControl getInstance\n", 39[Aud][PPC] AudioPPCControl getInstance

) =39

faccessatCAT_FDCWD, "/tmp/ppcfifo”, F_OK) = -1 ENOENT ([[ff¥ldg file or directory)
"/tmp/ppcfifo"., S _IFIFO|0777) = -1 ENOENT (\[eMS¥es file or director

The Secretive NVRAM

7501 openat(AT_FDCWD, "/data./[NEE/APCFG/APRDEB/BT_Addr", OLRDONLY) &l Pro
750] flock(5, LOCK_SH) -0

750] read(5, "\O\OF\201g\1 \@#\20\O\O\7\200\O\6\5\7\3E\37@\3PNOAN200NO 37\
P\O\O\O\G\O\O\G\O\O\O\O\O\O\O\O\G\O\O\O\O\C\O\O\O\@", 64) = 64

P close(5) /]

openat(AT_FDCWD, "/dev/disk/by-partlabel /[JUEM4", O_RDWR) = -1 ENOENT (N

openat(AT_FDCWD, "/dev/mtdl", O_RDWR) = -1 ENOENT (No such file or dire
openat(AT_FDCWD, "/data/[NRea/APCFG/APRDEB/PRODUCT_INFO", O_RDONLY) = 5
close(5) =0
newfstatat(AT_FDCWD, "/data/[NfRem/APCFG/APRDCL/FILE_VER", {st_mode=S_IF
2 =0
openat(AT_FDCWD, "/data/[iNgen/APCFG/APRDCL/FILE_VER", O_RDONLY) = 5
read(5, "NV VER_INFO\O\O\O\Q\O\O\O\Q\O\O\O\O\O\O\O\O\O\O\O\O\O\O\0\O
O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\Q", 70) = 70
P750] lseek(5, 3626, SEEK_SET) = 3626
P750] read(5, "PRODUCT_INFO\O\@\Q\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\Q\O\O\O

AC
AC
cat /tmp/abc | grep
openat(AT_FDCWD, "/1ib64/1ibjgised.so", O_RDONLY|O_CLOEXEC) = 3
openatCAT_FDCWD, _custom.so", O_RDONLYIO_CLOEXEC) = 3

(@}

[pid 3088] close(5) =0

[pid 3@88] write(l, "[@8-28 20:45:32][utils/SNManager.cpp:26][D] : Read Failed\n", 64[08-28 2(
:45:32] [utils/SNManager.cpp:26][D] : Read Failed

) = 64

[pid 3088] write(l, "<AST>[RegisterCmdHandler:113]:Cmd [22] Registered Handler!\n", 59<AST>[Registe

main pro

P750] openat(AT_FDCWD, "/data/[Ran/APCFG/APRDEB/BT_Addr", O_RDONLY)
p750] flock(5, LOCK_SH) =0
p750] read(S, "\O\OF\201g\1 \@#\ZO\O\O\7\200\O\6\5\7\3@\37@\ 3O\ 200\ 377\
\0\0\0\0\0\0\0\0\0\0\0\0\0\0\@\0\@\@\@\@\@\@\@\@\0" 64) =

close(5) =0

openat(AT_FDCWD, "/dev/disk/by-partlabel /JYEM", O_RDWR) = -1 ENOENT (N .
3 nvramsocket.py z4xz I
openat(AT_FDCWD, "/dev/mtdl", O_RDWR) = -1 ENOENT (No such file or dire
openat(AT_FDCWD, "/data/[iRea/APCFG/APRDEB,/PRODUCT_INFO", O_RDONLY) = 5 I —
close(5) =0
newfstatat(AT_FDCWD, "/dato/[lRas/APCFG/APRDCL/FILE_VER", {st_mode=S_IF
2) =
openat(AT_FDCWD, "/data/[iRea/APCFG/APRDCL/FILE_VER", O_RDONLY) = 5 inport socket

import sys

read(5, "IN VER_INFO\Q\Q\Q\@\O import o5

O\Q\Q\O\Q\O\O\Q\O\Q\O\O\Q\O\O\O\O\O\O\0" , 70) = 70 e o
p750] Lseek(S, 3626, SEEK_SET) = 3626 PR
750] read(5, "PRODUCT_INFO\O\0\G\0\G\O\G\G\G\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O\O reply with

try:

os.unlink(server_address)

/_ strace -f -s 256 chroot /opt_/ /usr/bin/ag except OsErron:

if os.path.exists(server_address):
pt AC
AC

raise

et.socket(socket.AF_UNIX,socket.SOCK_STRE.

cat /tmp/abc | grep
, /1ib64/1ibjg¥geli . so", O_RDONLY|O_CLOEXEC) =
“/11b64/11b —custom.so", O_RDONLY|O_CLOEXEC) = 3 interactor

no uo on ' ¥ cerver
g up on &s' ¥ server_

connection, client_address = sock.accept()
try:
il e
data += connection.recv(1824)
data = str(data)

address

Wireless Device

[WIFI_MW]

[WIFI_MW]

Current PID=808

control interface dir: /tmp/wpa_supplicant/

wpa control client path: /tmp/wpa_supplicant/wpa_ctrl_808
wpa monitor client path: /tmp/wpa_supplicant/wpa_moni_808
p2p control client path: /tmp/wpa_supplicant/p2p_ctrl_808
p2p monitor client path: /tmp/wpa_supplicant/p2p_moni_808

[WIFI_MW]
[WIFI_MW]
[WIFI_MW]
[WIFI_MW]
[WIFI_MW]
[WIFI_MW]
[WIFI_MW]
[WIFI_MW]

[WPA_CTRL] Enter wpaCtrlOpen: ctrl_path = /tmp/wpa_supplicant/wlan@.

wpaCtrlOpen: unlink(), ctrl->s: 11, ctrl->mLocal.sun_path: /tmp/wpa_supplicant/wpa_ct
wpaCtrlOpen: bind(), bindRet = 0.

wpaCtrlOpen: connect(), ctrl->s: 11, ctrl->dest.sun_path: /tmp/wpa_supplicant/wlan@
[WPA_CTRL] Leave wpaCtrlOpen(), conn = 0.

[WPA_CTRL] Enter wpaCtrlOpen: ctrl_path = /tmp/wpa_supplicant/wlan@.

wpaCtrlOpen: unlink(), ctrl->s: 12, ctrl->mLocal.sun_path: /tmp/wpa_supplicant/wpa_md
wpaCtrlOpen: bind(), bindRet = 0.

Everything Things Else Fail

jmp, cbz, cbnz and Friends

Original BIN Patched BIN
120 ; 7C420 ;
120 7C420
t20 loc_47C420 ;7 CODI 7C420 loc_47C420 ; CODE
120 LDR X0, [X19,#0x1! 7C420 LDR X0, [X19,#0x19
124 BL sub_479AF0 7C424 BL sub 479AF0
128 B loc_47C408 7C428 B loc_47C408
12C ; ===mmmmemmeem e —————— 7C42C ; ——————— e
12C 7C42C
t2C loc_47C42C ; CODI 7C42C loc_47cC42C ; CODE
2 T 7 7 T7C42C LDK AU, lLU;iumj
130 CBNZ X0, loc_47C4Al 7C430 CBZ X0, loc_47C4A0
{30 ¥ cl 7E€434
134 7C434 loc_47C434 ; CODE
i34 loc_47C434 ; CODI 7C434 ADD X21, X19, #0x2
134 ADD| X21, Xx19, #Ox 7C438 MoV X0, Xx21
t38 MOV X0, X21 7Cc43C BL sub_42FC50
i3C BL sub_42FC50 7C440 B loc_47C450
140 B loc_47C450 TCA44 ; — e
4 ; o 7C444
144 7C444 loc_47C444 ; CODE

Argument: To Patch or To Fulfill Firmware Needs

Skorpio Dynamic Binary Instrumentation

Issues

ADpins: I8 GPHD, BT, 5P, UART

Firmware Closed Lack Support

Emulation System for Embedded

> Binary only - without source code > Most fuzzers are built for X86 only

> Existing guided fuzzers rely on source code > Embedded systems based on Arm,
available Arm64, Mips, PPC

> Source code is needed for branch > Existing DBIs are poor for non-X86 CPU
instrumentation to feedback fuzzing

progress > Pin: Intel only

> DynamoRio: experimental support for
Arm

> Emulation such as QEMU mode support in
AFL is slow & limited in capability

> Same issue for other tools based on
Dynamic Binary Instrumentation

Dynamic Binary Instrumentation (DBI)

Definition
@ A method of analyzing a binary application at runtime through
injection of instrumentation code.

Extra code executed as a part of original instruction stream
No change to the original behavior

@ Framework to build apps on top of it

Applications
@ Code tracing/logging
@ Debugging
@ Profiling

@ Security enhancement/mitigation

DBI lllustration

. .

Inline
instrumentation

DBI Techniques

@ Just-in-Time translation
» Transparently translate & execute code at runtime

* Perform on IR: Valgrind
* Perform directly on native code: DynamoRio

» Better control on code executed
» Heavy, super complicated in design & implementation

@ Hooking

» Lightweight, much simpler to design & implement
» Less control on code executed & need to know in advance where to
Instrument

Hooking Mechanisms - Inline

@ Inline code injection

» Put instrumented code inline with original code
» Can instrument anywhere & unlimited in extra code injected
» Require complicated code rewrite

Inline

Hooking Mechanisms - Detour

@ Detour injection
» Branch to external instrumentation code
* User-defined CALLBACK as instrumented code
* TRAMPOLINE memory as a step-stone buffer
» Limited on where to hook
* Basic block too small?

» Easier to design & implement

Detour
instrumentation

Detour Injection Mechanisms

@ Branch from original instruction to instrumented code
@ Branch to trampoline, or directly to callback

» Jump-trampoline technique

» Jump-callback technique

» Call-trampoline technique

» Call-callback technique

Detour 1 2 3
instrumentation

Jump-trampoline Technique

instruction save context

JUMP restore context

save context

CALL callback

restore context

reloc instruction

JUMP

original instrumented trampoline

Jump-callback Technique

instruction save context

JUMP restore context

reloc instruction

callback

original instrumented

Call-trampoline Technique

save context

CALL restore context

save context
CALL callback
restore context

reloc instruction

RET

original instrumented trampoline

Call-callback Technique

save context
CALL restore context

reloc instruction

callback

original instrumented

Problems of Existing DBI

Limited on platform support
Limited on architecture support

Limited on instrumentation techniques

Limited on optimization

SKORPIO Framework

@ Low level framework to build applications on top
» App typically designed as dynamic libraries (DLL/SO/DYLIB)

@ Cross-platform-architecture

» Windows, MacOS, Linux, BSD, etc
» X86, Arm, Arm64, Mips, Sparc, PowerPC

@ Allow all kind of instrumentations
» Arbitrary address, in any privilege level

@ Designed to be easy to use, but support all kind of optimization
» Super fast (100x) compared to other frameworks, with proper setup

@ Support static instrumentation, too!

SKORPIO Architecture

Application

API

OS-agnostic Arch-agnostic

YL
{4‘

N
ay

-~

SKORPIO framework

Cross Platform - Memory

@ Thin layer to abstract away platform details
@ Different OS supported in separate plugin

» Posix vs Windows
@ Trampoline buffer

» Allocate memory: malloc() vs VirtualAlloc()

» Memory privilege RWX: mprotect() vs VirtualAlloc()

» Trampoline buffer as close as possible to code to reduce branch
distance

@ Patch code in memory

» Unprotect -> Patch -> Re-protect
» mprotect() vs VirtualProtect()

Cross architecture - Save/Restore Context

@ Save memory/registers modified by initial branch & callback

@ Keep the code size as small as possible

@ Depend on architecture + mode

» X86-32: PUSHAD; PUSHFD & POPFD; POPAD
» X86-64 & other CPUs: no simple instruction to save all registers :-(

* Calling convention: cdecl, optlink, pascal, stdcall, fastcall, safecall,
thiscall, vectorcall, Borland, Watcom

*x SystemV ABI vs Windows ABI

@ Special API to customize code to save/restore context

Cross Architecture - Callback argument

@ Pass user argument to user-defined callback

@ Depend on architecture + mode & calling convention
» SysV/Windows x86-32 vs x86-64

* Windows: cdecl, optlink, pascal, stdcall, fastcall, safecall, thiscall,
vectorcall, Borland, Watcom

» X86-64: "mov rcx, <value>" or "mov rdi, <value>. Encoding
depends on data value

Arm: "ldr r0, [pc, 0]; b .4+8; <4-byte-value>"

Arm64: "movz x0, <lo16>; movk x0, <hil6>, Isl 16"

Mips: "li $a0, <value>"

PPC: "lis %r3, <hil6>; ori %r3, %r3, <lo16>"

vy v.vyYy

Cross Architecture - Branch distance

@ Distance from hooking place to callback cause nightmare :-(
» Some architectures have no explicit support for far branching

*

* % O O % % % A %

X86-64 JUMP: "push <addr>; ret" or "push 0; mov dword ptr
[rsp+4], <addr>" or "jmp [rip]"

X86-64 CALL: "push <next-addr>; push <target>; ret"

Arm JUMP: "b <addr>" or "ldr pc, [pc, #-4]"

Arm CALL: "bl <addr>" or "add Ir, pc, #4; Idr pc, [pc, #-4]"
Arm64 JUMP: "b <addr>" or "ldr x16, .4+8: br x16"

Arm64 CALL: "bl <addr>" or "ldr x16, .+12; blr x16; b .4+12"
Mips JUMP: "li $t0, <addr>; jr $t0"

Mips CALL: "li $t0, <addr>; move $t9, $t0; jalr $t0"

Sparc JUMP: "set <addr>, %l4: jmp %l|4: nop"

Sparc CALL: "set <addr>, %l4; call %l4; nop"

Cross Architecture - Branch for PPC

@ PPC has no far jump instruction :-(
» copy LR to r23, save target address to r24, then copy to LR for BLR
» restore LR from r23 after jumping back from trampoline
» "mflr %r23; lis %r24, <hil6>; ori %r24, %r24, <lo16>; mtlr %r24;
blr"
@ PPC has no far call instruction :-(

» save r24 with target address, then copy r24 to LR

» point r24 to instruction after BLR, so later BLR go back there from
callback

» "lis %r24, <target-hil6>; ori %r24, %r24, <target-lo16>; mtlr %r24;
lis %r24, <ret-hil6>: ori %r24, %r24, <ret-lo16>: blr"

SK_INLINE_NO bbb_hook (
{

// restore LR from R24
_asm__();

printf(

return;

Cross Architecture - Scratch Register

@ Scratch registers used in initial branching

» Arm64, Mips, Sparc & PPC do not allow branch to indirect target in
memory

» Calculate branch target, or used as branch target
» Need scratch register(s) that are unused in local context

* Specified by user via API, or discovered automatically by engine

Cross Architecture - Flush Code Cache

@ Code patching need to be reflected in i-cache
@ Depend on architecture
» X86: no need

» Arm, Arm64, Mips, PowrPC, Sparc: special syscalls/instructions to
flush /invalidate i-cache

» Linux/GCC has special function: cacheflush(begin, end)

Code Boudary & Relocation

@ Need to extract instructions overwritten at instrumentation point
» Determine instruction boundary for X86
» Use Capstone disassembler
@ Need to rewrite instructions to work at relocated place (trampoline)
» Relative instructions (branch, memory access)
» Use Capstone disassembler to detect instruction type
» Use Keystone assembler to recompile

Code Analysis

@ Avoid overflow to next basic block
» Analysis to detect if basic block is too small for patching

@ Reduce number of registers saved before callback

@ Registers to be choosen as scratch registers

Customize on Instrumentation

API to setup calling convention

User-defined callback

User-defined trampoline
User-defined scratch registers

User-defined save-restore context

User-defined code to setup callback ars

Patch hooks in batch, or individual

User decide when to write/unwrite memory protect

ample for Skorpio engine

--- Original code
BBB code = 0x400ca@, callback = 0x400c80

ook info:
type: p)
address: 0x400cao
callback: 0x400c80
user_data: ox7b
trampoline addr: Ox7flaa7911000
trampoline size: 86
trampoline code: 5053515257565541504151415241549c48c7c77b0000006a00c70424321091a7c74424041a7100006a00c70424800c4000c39d415c4
15a415941585d5e5f5a595b584883ec08b9800c4000baad0c400068ae0c4000c3
Patch size: 14
Patched code: 2500000000001091a71a710000
ook original code size: 14
ook original code: 4883ec08b9800c4000baab0c4000

--- Functions with instrumentation now
== inside callback, userdata = 123
BBB code = 0x400ca@, callback = 0x400c80

--- Restored original code, now without instrumentation
BBB code = 0x400ca®, callback = 0x400c80

Guided Fuzzer for Embedded

Issues

Firmware Skorpio Lack Support
Emulation DBl for Embedded

> Most fuzzers are built for X86 only

> Embedded systems based on Arm,
Arm64, Mips, PPC

> Existing DBIs are poor for non-X86 CPU

> Pin: Intel only

> DynamoRio: experimental support for
Arm

Fuzzer Features

@ Built on top of AFL fuzzer

@ Support closed-source binary for all platforms & architectures
» Use Skorpio DBI to support all popular embedded CPUs

@ Support selective binary fuzzing

@ Support persistent mode

@ Other enhanced techniques

» Symbolic Execution to guide fuzzer forward
» Combine with static analysis for smarter/deeper penetration

@ Pure software-based
@ Cross-platform/architecture
» Native compiled on embedded systems
@ Binary support
» Full & selected binary fuzzing + Persistent mode

@ Fast & stable

» Stable & support all kind of binaries
» Order of magnitude faster than DBI/Emulation approaches

Fuzzer Implementation

Reuse AFL fuzzer - without changing its core design
AFL-compatible instrumentation
Static analysis on target binary beforehand

Inject Skorpio hooks into selected area in target binary at runtime

At runtime, hook callbacks update execution context in shared
memory, like how source-code based instrumentation do

@ Near native execution speed, ASLR / threading compatible

DEMO

Exploiting a RCE

(51)% uname -a
Linux xiangyu 4.15.0-34-generic #37-Ubuntu SMP Mon Aug 27 15:21:48 UTC 2018 x86_64 x86_64 x86_64 GNU/Linux

_zzij:5!II!I!!I!!ll!!'l!!l!!!'lllllll X
(52)% telne T LT

Trying 10.253.253.10...
telnet: Unable to connect to remote host: Connection refused

(1 :55:FdﬁIII!!I!!!I!!!II!!!!!IIIIIIII
(53)% telnet 10.253.253.1

Trying 10.253.253.10...

Connected to 10.253.253.10.

Escape character is '~]'.

~CM[quit

Connection closed by foreign host.

(54)% cat exp_router_international.py | grep 4444

cmd = "/bin/busibox telnetd -1 /bin/sh -p &"

(55)% python exp router_international.py
Traceback (most recent call last):
File "exp_router_international.py’
resp = urllib2.urlopen(req)
File "/usr/lib/python2.7/urllib2.py”, line 154, in urlopen
return opener.open(url, data, timeout)
File "/usr/lib/python2.7/urllib2.py”, line 429, in open
response = self. open(req, data)
File "/usr/lib/python2.7/urllib2.py", line 447, in _open
'_open', req)
File "/usr/lib/python2.7/urllib2.py”, line 407, in _call chain
result = func(*args)
File "/usr/lib/python2.7/urllib2.py", line 1228, in http open
return self.do_open(httplib.HTTPConnection, req)
File "/usr/lib/python2.7/urllib2.py", line 1201, in do_open
r = h.getresponse(buffering=True)
File "/usr/lib/python2.7/httplib.py"”, line 1121, in getresponse
response.begin()
File "/usr/lib/python2.7/httplib.py", line 438, in begin
version, status, reason = self. read_status()
File "/usr/lib/python2.7/httplib.py"”, line 402, in _read_status
raise BadStatuslLine(line)
httplib.BadStatuslLine: "'
(56)% telnet 10.253.253.10 4444
Trying 10.253.253.10...
Connected to 10.253.253.10.
Escape character is '~]'.
/ # uname -a
Linux armhf 4.9.0-6-armmp-lpae #1 SMP Debian 4.9.88-1+deb9ul (2018-05-07) armv71l GNU/Linux
/ #

, line 18, in <module>

Conclusions

Issues

24K Core Architecture

Alpins: I8 GPID, BT, 5P, UART

* 24Kc™ Core: This base core
includes a high-performance
32x32 multiply/divide unit and
configurable MMU with TLB or
fixed mapping.

* 24KEc™ Core: This core
adds the MIPS DSP ASE to the
foundation capabilities of the
24K series.

>

* 24Kf/24KEf™ Cores: Include
a hardware floating point unit that
is fully compliant with IEEE 754.

* 24K/24KE™ Pro Cores:
Pro series cores feature the
CorExtend™ capability for user
defined instructions

TAP Interface OCP Interface

1
|-
i

Firmware Skorpio

Emulation DBI

Guided

Fuzzer for Embedded

> Without built-in shell access for user
interaction

> Binary only - without source code

> Existing guided fuzzers rely on source code
> Without developement facilities required for available

building new tools > Source code is needed for branch

instrumentation to feedback fuzzing
progress

> Compiler

> Debugger
> Emulation such as QEMU mode support in

o SISl AFL is slow & limited in capability

> Same issue for other tools based on
Dynamic Binary Instrumentation

~

> Most fuzzers are built for X86 only

> Embedded systems based on Arm,
Arm64, Mips, PPC

> Existing DBIs are poor for non-X86 CPU
> Pin: Intel only

> DynamoRio: experimental support for
Arm

Conclusions

@ We built our smart guided fuzzer for embedded systems

» Emulate firmware

Cross platforms/architectures
Binary-only support

Fast + stable

>
>
>
» Found real impactful bugs in complicated software

Questions

Finding 0 Days in Embedded Systems
with Code Coverage Guided Fuzzing

NGUYEN Anh Quynh, aquynh -at- gmail.com
@sgniwx KaiJern LAU, kj -at- theshepherd.io

