
Outside

The Box

Breakouts and

Privilege

Escalation in

Container

Environments

BruCON 2018@cji and @_staaldraad

Who are we?

Etienne Stalmans

● Platform security

engineer

● Security Research and

finding ways to abuse

legitimate functionality

Craig Ingram

● Runtime software

engineer

● Security background in

breaking things, now

building things

What this talk is NOT about

Securing what’s in your containers

● Not going to cover security issues around:

○ Software supply chain

○ Monitoring/patching for CVEs within your containers

○ Creating hardened containers in your Dockerfiles

● Finding the latest Linux kernel syscall 0-day and ROP

chains to break out of containers

● Not an introduction to Kubernetes, Docker, or

containers

● Lots of movement and progress in container runtime land

around sandboxing/multi-tenancy

○ Alternative container runtimes like Kata and gvisor

What this talk IS about

Securing how you run and manage containers

● Safely run Other People’s Containers

○ While assuming they’re all malicious

● How to protect your orchestration control plane and

other containers from each other

● Examples of real-world multi-tenant container

environment configurations

○ And how we broke out of them

Multi-tenant container environments

Remote Code Execution - As a Service!

● Hosted cloud platforms that let you BYOContainer or run your

code in one for you

○ PaaS cloud providers

○ Hosted CI/CD

○ FaaS/Serverless

● Providers need a way to orchestrate all of these containers

○ Homegrown using cloud primitives to launch EC2/GCP/Azure

instances

○ Increasingly using Kubernetes

■ Self-managed and home grown deployment

■ Kops, kubeadm, Heptio quickstart, Tectonic, etc.

■ Cloud provider managed (EKS, GKE, AKS)

○ Starting to see some Service Mesh usage (Consul, Istio)

Constantly Vulnerable Everywhere

(CVEs)

Still a requirement to keep your management environment up

to date

● CVEs in the platform itself

○ Kubernetes subpath vulnerabilities

● CVEs in underlying dependencies

○ RCE in Git -> affected Kubernetes via the DEPRECATED

GitRepo volume feature

● CVEs in the kernel

○ Linux Kernel “local privilege escalation” issues

have a higher impact when you let anyone have access

to your server and let them run arbitrary syscalls.

Demo!

CVE-2017-1002101 subpath exploit

● Classic Linux vulnerability -

file system breakout by

improperly following symbolic

links

● Create a volume in one

container with a symbolic

link to `/`

● Use the same volume in

another container and the

kubelet would incorrectly

follow the symbolic link on

the node’s host filesystem

Simple PoC based on demos from Twistlock

https://www.twistlock.com/2018/03/21/deep-dive-

severe-kubernetes-vulnerability-date-cve-2017-1

002101/ and Brad Geesaman

https://github.com/bgeesaman/subpath-exploit

https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://www.twistlock.com/2018/03/21/deep-dive-severe-kubernetes-vulnerability-date-cve-2017-1002101/
https://github.com/bgeesaman/subpath-exploit

Bonus! Another Demo!

Exploiting External Dependencies

Multi-tenant CI

environment

using Kubernetes

Clone and use repository as a Volume

Exploiting External Dependencies

Exploiting External Dependencies

https://docs.google.com/file/d/1oNIThe7MAs3mJQ_Yr-fKUqcv5PBq7pf5/preview

Solution

Patch / Vulnerability management doesn’t only apply to the

containers

● Heavy focus on continuous container security

● Control plane and underlying environment isn’t immune

● Who is responsible?

○ Hosting provider (Cloud providers)

○ You?

● What needs updating?

○ Operating system

○ Control software

○ Supporting software

mistakes.conf

Configuration complexity leads to vulnerabilities

● Exposing Docker Engine or Kubernetes API to untrusted

containers/processes

● Leaving cloud provider metadata API accessible

● Missing or inadequate kernel level protections

○ Seccomp profiles

○ Capabilities

○ Namespacing

Demo!

Example - Escaping the Build

Multi-tenant CI environment using GCP, Docker, Consul

Example - Escaping the Build

Bonus - Alternative, easier reverse shell (Thanks @friism!)

Exploiting Misconfigurations

Multi-tenant CI

environment using

GCP, Docker,

Consul

Example - Mounting the host filesystem

Example - Mounting the host filesystem

Fixing it

Seccomp and Capabilities

● Docker defaults are really good!

● Seccomp

○ Naive approach: blacklist mknod

○ Easy to bypass: attacker uses mknodat

○ Aim for whitelist approach

● Capabilities

○ Drop all

○ Add capabilities as required

● Combine seccomp and capabilities

● Avoid --privileged

Control Plane Insecurities

The Control Plane offers a large attack surface

● Restricting access to control plane

○ It is easy to forget / miss API endpoints

● Kubectl

● Dashboards

● Docker Daemon

● Examples:
○ https://blog.heroku.com/exploration-of-security-when-building-docke

r-containers

○ https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdoo

ring-through-kubelet-823be5c3d67c

○ https://info.lacework.com/hubfs/Containers%20At-Risk_%20A%20Review%

20of%2021,000%20Cloud%20Environments.pdf

○ https://github.com/kayrus/kubelet-exploit

https://blog.heroku.com/exploration-of-security-when-building-docker-containers
https://blog.heroku.com/exploration-of-security-when-building-docker-containers
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://medium.com/handy-tech/analysis-of-a-kubernetes-hack-backdooring-through-kubelet-823be5c3d67c
https://info.lacework.com/hubfs/Containers%20At-Risk_%20A%20Review%20of%2021,000%20Cloud%20Environments.pdf
https://info.lacework.com/hubfs/Containers%20At-Risk_%20A%20Review%20of%2021,000%20Cloud%20Environments.pdf
https://github.com/kayrus/kubelet-exploit

Access to kubelet API from

container

Default EKS deployment with RBAC limited service account

But, info disclosure from node’s kubelet read-only API (via cAdvisor)

on port 10255 (10250 requires auth)

Control Plane Insecurities

The hosting environment can be vulnerable

● Cloud metadata endpoints

○ http://169.254.169.254

● Control plane access on the hosting provider

○ https://hackerone.com/reports/341876

○ https://hackerone.com/reports/401136

http://169.254.169.254
https://hackerone.com/reports/341876
https://hackerone.com/reports/401136

Now what?

Securing the orchestration control plane

● Guidance will focus on Kubernetes, as it’s the leading

orchestration platform we’ve encountered in our

research

● Similar guidance can be applied to other platforms like

Mesos, Swarm, etc.

● More (or less) may need to be done, depending on your

deployment

○ Hosted solutions (EKS/GKE/AKS/etc) vs Turnkey

Installers (kops, kubeadm, etc.)

Access Control

RBAC everything

● ABAC is no good, disabled by default in 1.8+

○ --no-enable-legacy-authorization

● Most installers and providers enable RBAC by default now �

● Default for managed Kubernetes too

○ EKS https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

○ GKE

https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-contr

ol

○ AKS

https://docs.microsoft.com/en-us/azure/aks/aad-integration#create-rbac-binding

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://cloud.google.com/kubernetes-engine/docs/how-to/role-based-access-control
https://docs.microsoft.com/en-us/azure/aks/aad-integration#create-rbac-binding

API Lockdown

Kube and Kubelet

● RBAC

○ Previously discussed, can easily limit access to the Kubernetes API

via the default service token

○ automountServiceAccountToken: false
■ for untrusted pods who don’t need to talk to the API

■ Some discussion to make this the default

● Kubectl external auth (IAM, OpenID Connect)

○ Aws-iam-authenticator, kubelogin

● Block kubelet API access from pods

○ --anonymous-auth=false
○ Network plugin like Calico/Weave to block

○ Or possibly with a DaemonSet to modify the Master node iptables

■ E.g.

https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650a

d8da

https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650ad8da
https://gist.github.com/josselin-c/3002e9bac8be27305b579ba6650ad8da

Infrastructure Metadata Protection

169.254.169.254 considered harmful

● Block access to your cloud provider’s metadata proxy

● Use:

○ GCE - Metadata proxy, GKE metadata concealment

○ AWS - Kube2iam or kiam - installs iptables rules to

block pods

○ Egress Network Policy object (Kubernetes 1.8+)

○ CNI (Calico), Istio

Workload Isolation

Hard Multi-Tenancy Is Hard

● Official hard multi-tenancy support is still being

worked on and discussed

○ Join the multitenancy working group to participate!

○ https://blog.jessfraz.com/post/hard-multi-tenancy-in

-kubernetes/

● Locking down control plane access is foundational

● But we can do more today

○ Namespace per tenant

○ Pod Security Policy

○ Network Policy

○ Resource Limits

https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes/
https://blog.jessfraz.com/post/hard-multi-tenancy-in-kubernetes/

DenyEscalatingExec - Don’t allow kubectl exec into a container running as
privileged or with host namespace access

AlwaysPullImages - Prevent unauthorized users from accessing private, cached

container images

NodeRestriction - Kubelet can only modify its own Node and Pod objects

PodSecurityPolicy - Enforce security features for all pods in a cluster (see

next slide)

ResourceQuota - Enforce resource limits (CPU, Memory, etc) on namespace

resources

ImagePolicyWebhook - (Out of scope for this talk) require a backend like

Clair to give a +1 on using an image without missing security patches

Version Dependent Recommendations:

https://kubernetes.io/docs/reference/access-authn-authz/admission-controller

s/#is-there-a-recommended-set-of-admission-controllers-to-use

Raise the price of admission

https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use
https://kubernetes.io/docs/reference/access-authn-authz/admission-controllers/#is-there-a-recommended-set-of-admission-controllers-to-use

Pod Security Policy

● Configure a security context for your pod/containers

○ https://kubernetes.io/docs/tasks/configure-pod-container/security-c

ontext/#set-the-security-context-for-a-pod

● And then enforce it with a PSP admission controller

● Tim Allclair’s Example covers all the bases

https://gist.github.com/tallclair/11981031b6bfa829bb1fb9dcb7e0

26b0

○ Seccomp and Apparmor annotations (using docker default) to

restrict syscalls

○ Drops all Linux capabilities by default

○ Blocks privilege escalation

○ Blocks root user/group in containers

○ Blocks using the host network/IPC/process namespaces

○ Limits volume types (would have prevented the git issue!)

● This will probably be too restrictive for your use case(s)

https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod
https://kubernetes.io/docs/tasks/configure-pod-container/security-context/#set-the-security-context-for-a-pod
https://gist.github.com/tallclair/11981031b6bfa829bb1fb9dcb7e026b0
https://gist.github.com/tallclair/11981031b6bfa829bb1fb9dcb7e026b0

Network Policy
Isolate pod communications and protect the API

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: default-deny

spec:

 ## Selector matches all pods

 podSelector: {}

 policyTypes:

 ## Empty rules here means no ingress/egress

 - Ingress

 - Egress

Resource Quotas

Define a namespace scoped

policy to restrict

resource utilization for

multi-tenant objects.

Limit the noisy neighbors

Benchmark it
Automation > point in time audits

● CIS Kubernetes benchmark sets a standard

○ kube-bench and kube-auto-analyzer automate the benchmark

● Kubesec.io for deployment YAML

○ YAML static analysis

○ Kubectl plugin as well as an admission controller to block unsafe

deploys

● Add to your CI/CD pipeline or VCS

Break it

● New tool from Liz Rice and Aqua Security: kube-hunter

● Penetration testing perspective to find (and exploit)

misconfigurations that would show up on a kube-bench

scan

● https://github.com/aquasecurity/kube-hunter

● Can automate running this for ongoing audits, speed up

assessments

https://github.com/aquasecurity/kube-hunter

Credit and thanks

Thank you to the many people whose prior work directed and

informed our research and whose work we’ve referenced in

our talk

● Tim Allclair @tallclair

● Jessie Frazelle @jessfraz

● Brad Geesaman @bradgeesaman

● Andrew Martin @sublimino

● Liz Rice @lizrice

● ...and the rest of the cloud native development

community!

Thank You!

Twitter: @cji & @_staaldraad

Slides: https://github.com/cji/talks

https://github.com/cji/talks

