
Proprietary + Confidential

These slides may not be
redistributed without written
permission.

(BruCON also may not re-post or
share these slides without written
permission.)

Detecting Malware
Capabilities with capa

September 28, 2023

introduction

motivation

capa tool

reading rules

writing rules

conclusion

01

02

03

04

05

06

outline

agenda

Us talking You working on labs

Lab reviews and discussions Break and buffer ;)

35:00 min

20:00 min

60:00 min

5:00 min

introduction
01

Willi Ballenthin
FLARE

Moritz Raabe
FLARE

Mike Hunhoff
FLARE

about us

the FLARE team

● Worldwide center of malware analysis excellence

● Open source development

● Education and knowledge sharing

https://flare-on.com

motivation
02

reality

Analysis shortcomings and gaps in the community

Forensic, intelligence, and malware analysts are faced with the

challenge of understanding and triaging unknown programs on a daily

basis

Experienced reverse engineers have trained eyes and brains that

quickly recognize the most relevant parts of a program

● Can we codify and automate this knowledge?

building blocks

What features do we (humans) notice?

● Expert-driven system, not AI

Are the results easy to explain to a human?

● Tool must always be ready to “show its work”

How can we make this flexible and extendable?

result

With capa, we claim that some analysis conclusions are easy

Encodes patterns that have been recognized for decades

● Look for API calls, look for strings, …, and look for anomalies

● “When you see this and that, then we know other is

happening”

Provides framework for

● Experts to express these patterns

● Analysts to recognize these patterns

capa tool
03

what is capa?

Tool to detect capabilities in executable files and shellcode

Powered by a collection of over 800 rules matching features

extracted from PE, ELF, .NET, and shellcode files

Two main components

● Code analysis engine

○ Extracts features from files, such as strings,

disassembly, and control flow

● Logic engine

○ Finds combinations of features that are expressed in

a common rule format

usage

Download latest release of standalone tool from GitHub

● Windows

● Linux

● macOS

Contains all source code, Python interpreter, and associated

resources (i.e. rules) needed to run capa

Run via command line (--help to view supported flags)

Multiple output formats

capa.exe /path/to/file

capa.exe /path/to/file -v

capa.exe /path/to/file -vv

capa.exe /path/to/file -j [> /path/to/json/file]

why use capa?

Triage malware samples without deep, manual analysis

Identify malware samples via “capability signature”

Compute similarity among samples

Guide advanced reverse engineering

● Pivot to most interesting areas of code

integrations

Available in VirusTotal

Integrated with popular analysis tools including

● IDA Pro

● Binary Ninja

● Ghidra

1. Google Drive.

a. https://drive.google.com/drive/folders/1vRkj4nJ6SZuFnOANHD06V416keUN5_sC

b. contains all the following content.

2. .zip archive. password: infected.

a. capa.exe, capa-rules, capa-testfiles, labs

b. use this if you have your own dev/analysis environment.

3. VMware Workstation 14.x compatible virtual machine. Ubuntu 23.04 guest OS. user/password.

a. capa.exe, capa-rules, capa-testfiles, lab

b. analysis tools: ghidra, ida-free

c. development tools: vscode

d. use this if you need a pre-built dev/analysis environment.

lab setup

lab one
using capa

lab one using capa

Use capa to answer the following questions

a)

1. Which of the file(s) is a Windows PE? Linux ELF? Windows .NET PE?

2. Which of the file(s) is packed? Using what packer?

b)

1. How many functions does capa identify in the packed file? How many features?

2. How many functions does capa identify in the unpacked file? How many features? (Hint: unpack the file using upx -d)

c)

1. Which file(s) use MITRE ATT&CK persistence tactics? What is the specific persistence technique(s)?

2. Which file(s) create a mutex? Which function address is responsible for creating the mutex?

bonus)

1. Execute capa to generate JSON-formatted output for the unpacked file and use jq to display the address of any function that has a

match (Hint: all of the data that you need is stored in the meta field. Use the command jq ".meta" /path/to/json to display the

contents of the meta field).

lab one answers (a)
Which of the files is a Windows PE? Linux ELF? Windows .NET PE?

8363436878404DA0AE3E46991E355B83,

2BF18D0403677378ADAD9001B1243211,

692F7FD6D198E804D6AF98EB9E390D61

Which of the files is packed? 8363436878404DA0AE3E46991E355B83

Using what packer? UPX

lab one answers (a)

How many functions does capa identify in the packed file? 2

How many features? 246

lab one answers (b)

How many functions does capa identify in the unpacked file? 9

How many features? 440

lab one answers (b)

Which file(s) use MITRE ATT&CK persistence tactics? 8363436878404da0ae3e46991e355b83-unpacked

What is the specific persistence technique(s)? persist via Windows service

lab one answers (c)

Which file(s) create a mutex? 8363436878404da0ae3e46991e355b83-unpacked

Which function address is responsible for creating the mutex? 0x401040

lab one answers (c)

Execute capa to generate JSON-formatted output to a file for the unpacked Windows PE file and use jq to display the address of each

matched function

> jq ".meta.analysis.layout.functions.[].address.value" /path/to/json

4198400

4198464

4198800

lab one answers (bonus)

capa rules
04

rule format

YAML-based format that contains two main blocks

● meta

● features

rule format

rules
Written and vetted by
experts

contributors
Security practitioners

downloads
Since first release in 2020

75
180,000

830

capa statistics

meta block

Identifies the rule, groups the technique, and provides references to

documentation

Mix of required and optional fields

required fields

name: Uniquely identifies rule

namespace: Groups related rules

authors: Lists rule author(s) name or handle

scope: Specifies feature set applied to rule

● instruction (most specific)

● basic block

● function

● file (most general)

optional fields

description: Provides additional context on rule’s intent

att&ck: Specifies ATT&CK framework technique

mbc: Specifies Malware Behavior Catalog technique

examples: Lists reference samples that match rule

features block

Logic tree consisting of nested combinations of structural

expressions, features, and characteristics

Structural expressions

● and: All children must match

● or: Match at least one child

● not: Match when child expression does not

● n or more: Match at least n or more children

○ optional (0 or more)

Scopes

● instruction (most specific)

● basic block

● function (most general)

features and characteristics
file

(sub)string
export
import
section
forwarded export

function-name
namespace
class
embedded pe
mixed mode

function

loop
recursive call

calls from
calls to

basic block

tight loop stack string

instruction

namespace
class
api
property
number
nzxor
peb access
fs access
gs access

(sub)string
bytes
offset
mnemonic
operand
cross section flow
indirect call
call $+5
unmanaged call

(global)

os
arch

format

Features are extracted from multiple scopes, starting with most

specific (instruction), and working towards most general (file)

Characteristics are one-off features that represent unique or

interesting functionality

features and characteristics
file

(sub)string
export
import
section
forwarded export

function-name
namespace
class
embedded pe
mixed mode

function

loop
recursive call

calls from
calls to

basic block

tight loop stack string

instruction

namespace
class
api
property
number
nzxor
peb access
fs access
gs access

(sub)string
bytes
offset
mnemonic
operand
cross section flow
indirect call
call $+5
unmanaged call

(global)

os
arch

format

Features are extracted from multiple scopes, starting with most

specific (instruction), and working towards most general (file)

Characteristics are one-off features that represent unique or

interesting functionality

capa.exe /path/to/file -vv

where the match occurred

submatch

lab two
reading capa rules

lab two reading capa rules

Use capa to answer the following questions using sample 9976ff9292264c5e58318e6b785fd13b:

a)

1. Based on which feature categories does capa recognize the check for sandbox username or hostname capability?

2. How many functions implement this capability?

3. List the sandbox usernames/hostname values that capa recognizes.

b)

1. How many features does capa use to detect the reference anti-VM strings targeting VMWare capability?

2. How many functions implement this capability?

c)

1. Which function sends and receives data?

2. Which APIs does the sample use to send and receive data?

3. How many submatches are identified in the function?

d)

1. How many library rule matches does capa identify in the sample?

lab two: reading capa rules

Sample: 9976ff9292264c5e58318e6b785fd13b

A)

1. Based on which feature categories does capa recognize the check for sandbox username or hostname capability?

2. How many functions implement this capability?

3. List the sandbox usernames/hostname values that capa recognizes.

B)

1. How many features does capa use to detect the reference anti-VM strings targeting VirtualBox capability?

2. How many functions implement this capability?

C)

1. Which function sends and receives data?

2. Which APIs does the sample use to send and receive data?

3. How many submatches are identified in the function?

D)

1. How many library rule matches does capa identify in the sample?

lab two answers (a)

lab two answers (b)

lab two answers (c)

lab two answers (d)

writing rules
05

why are capa rules important?

Foundation of capa’s analysis

● Over 800 rules in official rule repository on GitHub

Extend capa to recognize new behaviors

Have huge reach through capa integrations like VirusTotal

Serve as documentation of common malware techniques

writing a rule

How to find a behavior to describe?

● You are reverse engineering and you notice a technique, so

you encode it for your future self (and everyone else)

● You browse #good-first-issue and/or #help-wanted on github

What do you need to get started?

● Some idea of the features and logic that describe the

behavior. API names, constants

● You may see this in your disassembler

● You may find a StackOverflow post or Github repository with

a code snippet

example: disassembly

example: decompilation

screenshot: candidate features

GetDesktopWindow(...)

GetWindowDC(...)

GetDeviceCaps(hdc, 8) // HORZRES

GetDeviceCaps(hdc, 10) // VERTRES

CreateCompatibleDC(...)

CreateCompatibleBitmap(...)

SelectObject(...)

BitBlt(...., 0xCC0020) // SRCCOPY

GetObject(...)

and:
 - api: GetDesktopWindow

 - api: GetWindowDC

 - api: GetDeviceCaps

 - api: GetDeviceCaps

 - api: CreateCompatibleDC

 - api: CreateCompatibleBitmap

 - api: SelectObject

 - api: BitBlt

 - api: GetObject

candidate features

and:
 - api: GetDesktopWindow

 - api: GetWindowDC

 - and:

 - api: GetDeviceCaps

 - number: 8

 - and:

 - api: GetDeviceCaps

 - number: 10

 - api: CreateCompatibleDC

 - api: CreateCompatibleBitmap

 - api: SelectObject

 - and:

 - api: BitBlt

 - number: 0xCC0020

 - api: GetObject

logic nodes

show-features

show-features

and:
 - api: GetDesktopWindow

 - api: GetWindowDC

 - and:

 - api: GetDeviceCaps

 - number: 8 = HORZRES

 - and:

 - api: GetDeviceCaps

 - number: 10 = VERTRES

 - api: CreateCompatibleDC

 - api: CreateCompatibleBitmap

 - api: SelectObject

 - and:

 - api: BitBlt

 - number: 0xCC0020 = SRCCOPY

 - api: GetObject

comments & symbols

and:
 - api: GetDesktopWindow

 - api: GetWindowDC

 - and:

 - api: GetDeviceCaps

 - number: 8 = HORZRES

 - and:

 - api: GetDeviceCaps

 - number: 10 = VERTRES

 - api: CreateCompatibleDC

 - api: CreateCompatibleBitmap

 - api: SelectObject

 - basic block:

 - and:

 - api: BitBlt

 - number: 0xCC0020 = SRCCOPY

 - api: GetObject

comments & symbols

and:
 - api: GetDesktopWindow

 - api: GetWindowDC

 - and:

 - api: GetDeviceCaps

 - number: 8 = HORZRES

 - and:

 - api: GetDeviceCaps

 - number: 10 = VERTRES

 - api: CreateCompatibleDC

 - api: CreateCompatibleBitmap

 - api: SelectObject

 - basic block:

 - description: copy source ⟶ destination rectangle.

 - and:

 - api: BitBlt

 - number: 0xCC0020 = SRCCOPY

 - api: GetObject

comments & symbols

 meta:

 name: capture screenshot

 namespace: collection/screenshot

 authors:

 - BruCON’23

 scope: function

 att&ck:

 - Collection::Screen Capture [T1113]

 mbc:

 - Collection::Screen Capture::WinAPI [E1113.m01]

 examples:

 - a30101595f6f28a…761a3795d0887c24ada:0x418510

rule metadata

final rule

setting the rule path

-v

A

-vv

capafmt

rule linter

lab three
writing capa rules

lab three writing capa rules

For each of the following behaviors and samples

A. Persisting via a registry run key, 3f8e2b945deba235fa4888682bd0d640

B. Writing to a file, 625ac05fd47adc3c63700c3b30de79ab

C. Creating a TCP socket, 290934c61de9176ad682ffdd65f0a669

Write a capa rule that matches against sample, and consider:

1. What features did you reference? Are there any alternatives?

2. Which scope did you use? Why?

3. Can you write a yara rule for this?

lab three answers (a)

Write a capa rule that matches persisting via a registry run key against sample 3f8e2b945deba235fa4888682bd0d640

1. What features did you reference? Are there any alternatives?

2. Which scope did you use? Why?

3. Can you write a yara rule for this?

lab three answers (a)

lab three answers (a)

Write a capa rule that matches persisting via a registry run key against sample 3f8e2b945deba235fa4888682bd0d640

1. What features did you reference? Are there any alternatives?

 see:

● persistence/registry/run/persist-via-registry-run-key.yml

● host-interaction/registry/create/set-registry-value.yml

2. Which scope did you use? Why?

 function

3. Can you write a yara rule for this?

 yes

lab three answers (a): set registry value

lab three answers (b)

Write a capa rule that matches writing to a file against sample 625ac05fd47adc3c63700c3b30de79ab

1. What features did you reference? Are there any alternatives?

2. Which scope did you use? Why?

3. Can you write a yara rule for this?

lab three answers (b)

lab three answers (b)

Write a capa rule that matches writing to a file against sample 3f8e2b945deba235fa4888682bd0d640

1. What features did you reference? Are there any alternatives?

WriteFile

optional: CreateFile with arguments

2. Which scope did you use? Why?

function, so that the basic block subscope can work.

Otherwise, instruction scope.

3. Can you write a yara rule for this?

 yes? maybe?

lab three answers (c)

Write a capa rule that matches creating a TCP socket against sample 290934c61de9176ad682ffdd65f0a669

1. What features did you reference? Are there any alternatives?

2. Which scope did you use? Why?

3. Can you write a yara rule for this?

lab three answers (c)

lab three answers (c)

Write a capa rule that matches creating a TCP socket against sample 290934c61de9176ad682ffdd65f0a669

1. What features did you reference? Are there any alternatives?

ws2_32.socket, but also:

● WSASocket

● socket

2. Which scope did you use? Why?

basic block, to capture the arguments to the API call.

3. Can you write a yara rule for this?

No, due to operand decoding.

(Also, did you notice: socket is imported by ordinal?)

shortcomings

capa limitations

Obfuscation

● Hides logic preventing capa from working well

No call scope

● Workaround: group features using basic block scope

Expertise to author rules

Conclusion
06

ongoing and future work

Website

In progress, help wanted

Ghidra UI

In progress, but help wanted

ARM Architecture

ARM enthusiasts wanted

Call Scope

Help wanted

Dynamic Analysis

In progress

Thank you.

