
OSDP & PACS
BruCON 2023

Knud Højgaard / knud@fraktal.fi

(Quick) PACS overview

Weaknesses in Physical Access Control Systems

OSDP and the role it plays in PACS

How to audit OSDP installations & components

2

Overview for this time slot

Custom, vendor-designed, magical black boxes full of proprietary stuff to guarantee

lock-in vs. interoperable / standards-driven

3

Physical Access Control System component overview

Safe sideDanger side

• Cloneable low frequency tags

• Hackable / exploitable high frequency tags

• Exploitable readers

• Exploitable access panels

• Exploitable backends

• Weak / legacy or misconfigured setups (MIFARE, Wiegand) still being installed

 Irresponsible and uncommitted installers, vendor lag

4

Current PACS status = dumpster fire

Wiegand is the “gold standard” for communications from reader to panel

The protocol is equivalent to plain text, sniffable and replayable to such an extent that

there’s a commercial product to exploit it

ESPKey; $79 Wiegand interception tool

5

Wiegand

Attack tokens

• Downside: must obtain token

• Cloning/duplicating & long-range reading of insecure tags main risk

Attack the reader; it’s on the danger side

• Key extraction from the bike shed reader

• Reconfiguration, malicious firmware flashing

• EM attacks, DoS attacks

Attack communications to the access panel

• Recordings, replays, direct injection of manipulated token data

• Must be able to identify communication protocol on the wire

Attack the access panel or backend

• Requires network presence to attack via IP side, often objective of PACS tomfoolery is to

gain network access, chicken||egg

6

Modern PACS attack areas

ESPKey is hopefully the final nail in the coffin for Wiegand

Enter OSDP

Open Supervised Device Protocol

With standards come some security, since test/edge cases can be made and tested for

More problems solved with this than just sniffing / relaying

7

Times are changing (slowly)

From unidirectional point to point bit spitting (Wiegand) to a bus network with

addressing

OSDP V1 brings nothing interesting from a security perspective

(hopefully) not widely deployed

OSDP V2 is a superset of OSDP V1 and adds new functionality such as

• secure channel encryption (!)

• smart card passthrough communication

• biometric reader support

8

Wiegand vs. OSDP V1 vs. V2

OSDP V1 was jointly created in 2008 between HID Global, Mercury Security and Lenel. *

In 2012, the Security Industry Association (SIA) took ownership of the OSDP specification,

and the SIA OSDP Working Group developed OSDP V2.

Standardized in IEC 60839-11-5:2020 (July 2020), still evolving, SIA up to version 2.2 now

• Free to use; standard document price ranges from €320 eur from iec.ch to $56 from

normstream

Bidirectional communication, spoken on top of half-duplex RS485

• 1km cable runs, multi-drop bus network

9

OSDP history + overview

* plt-04025_a.0_-_hid-mercury_osdp_faq.pdf

Getting an OSDP verified reader signifies that it passes a set of tests

Mostly functional / conformance testing, with some very optimistic phrasing

OSDP verification

https://www.securityindustry.org/industry-standards/open-supervised-device-protocol/sia-osdp-verified/sia-osdp-verified-products/

We no longer have “readers” but “peripheral devices” (PD)

Multiple peripheral types, in order of complexity:

peripheral, basic, biometrics, extended packet mode

The access panel is now an access control unit (ACU) according to IEC, perhaps a CP

according to SIA. Other than that, things are pretty much the same:

token/card -> PD <-> ACU <-> backend

11

OSDP terminology

Extended packet mode, OR transparent mode (hid/assa licensing encumbrance)

All card / security logic theoretically passed as-is to ACU on secure side of door

https://en.wikipedia.org/wiki/Contactless_smart_card

Comes with challenges in terms of over-the-internet relay attacks

ISO/IEC 14443 FWT of 77 milliseconds

1 verified vendor supports this (so far)

12

OSDP V2 feature: smart card communication

RTT +5ms

per 1000km

https://en.wikipedia.org/wiki/Contactless_smart_card

Self-contained / isolated functionality in the protocol for some reason

Implemented as CMND 0x73, osdp_BIOREAD

1 verified vendor supports this (so far)

13

OSDP V2 feature: biometric reader support

OSDP secure channel is based on “secure channel protocol 03” by GlobalPlatform

OSDP standard (2.1.5):

Sample Secure Channel establishment session:

Sample Shared SCBK_D key = “303132333435363738393A3B3C3D3E3F”

This “sample key” has evolved into the default SCBK in 2.2

This default key is then used for protecting the channel during osdp_KEYSET events

- the spec requires the channel to be secure for keyset

an-321_configuring_ict_readers_for_osdp_communication.pdf

14

OSDP V2 with secure channel briefly explained

The reader/PD cannot initiate communication

The panel/ACU sends a steady stream of OSDP_POLL messages

Reader/PD events such as token reads are sent as responses to these polls

15

OSDP V2 communication flow

16

OSDP message format (header with CTRL & SCB)
Byte Name Meaning Value

0 SOM Start of Message 0x53

1 ADDR Physical Address of the PD 0x00 – 0x7E

2 LEN_LSB Packet Length Least Significant Byte Any

3 LEN_MSB Packet Length Most Significant Byte Any

4 CTRL Message Control Information See Below

BIT MASK NAME Meaning

0 - 1 0x03 SQN Packet sequence number

2 0x04 CKSUM/ CRC Set: 16-bit CRC; Clear: 8-bit CHECKSUM

3 0x08 SCB Set: SCB is present; Clear: SCB is absent

Byte Name Meaning Value

5 SEC_BLK_LEN Length of Security Control Block Any

6 SEC_BLK_TYPE Security Block Type Based on type

7 - m-1 SEC_BLK_DATA Security Block Data Based on type

M
e
s
s
a
g

e
 h

e
a
d

e
r | C

T
R

L
 b

lo
c
k
 | s

e
c
 c

trl b
lo

c
k

Previous slide omitted the actual message part and the trailing checksum or CRC

Byte 6 (if no SCB) holds the command or reply code

Sample poll-response without secure channel captured, easily decoded

17

OSDP message capture (SC DISABLED)

PULL_HI SOM ADDR LEN LSB LEN MSB CTRL CMND CRC CRC

FF 0x53 0x00 0x08 0x00 0x07 0x60 0xb8 0xbf

FF 0x53 0x80 0x08 0x00 0x05 0x40 0x0a 0xf9

^^ covered in previous slide ^^ covered in previous slide ^^ ^^ new ^^ new ^^ new

Sample poll-response with secure channel enabled from test devices

SEC_BLK_TYP 15: req (panel to reader)

SEC_BLK_TYP 16: resp (reader to panel)

Secure channel is established, and a MAC is included

but the data field (SEC_BLK_DAT) is unencrypted

Secure channel is enabled, but encryption is not

18

OSDP message capture (SC ENABLED)

HI SOM ADDR LEN LSB LEN MSB CTRL SEC_BLK_LEN SEC_BLK_TYP SEC_BLK_DAT MAC CRC

0xff 0x53 0x00 0x0e 0x00x0d 0x2 0x15 0x60 4cd24824 16c3

0xff 0x53 0x80 0x0e 0x00x0d 0x2 0x16 0x40 6f7e2898 fa85

0xff 0x53 0x00 0x0e 0x00x0e 0x2 0x15 0x60 2ef41207 ca7e

0xff 0x53 0x80 0x0e 0x00x0e 0x2 0x16 0x40 5364cd03 6377

Async serial over RS485!

Once you have verified you are working with OSDP you can just do something like

stty -F /dev/ttyUSB0 raw 9600; modprobe usbmon

while true ; do cat /dev/ttyUSB0 > /dev/null ; done

Then you can use Wireshark coloring rules to make sense

of protocol flows and check if messages are flowing in plaintext

19

OSDP sniffing & decoding

OSDP verified / compliant device:

@osdp RSTATR(usb.capdata[0-1]==ff:53 && usb.capdata[5]<8 &&

usb.capdata[6]==4B)@[57825,57825,57825][0,0,0]

A device not pulling the wire high:

@osdp RSTATR@(usb.capdata[0]==53 && usb.capdata[4]<8 && usb.capdata[5]==4B)

@[57825,57825,57825][0,0,0]

Combined and unreadable:

@osdp RSTATR@(usb.capdata[0]==53 && usb.capdata[4]<8 && usb.capdata[5]==4B) ||

(usb.capdata[0-1]==ff:53 && usb.capdata[5]<8 &&

usb.capdata[6]==4B)@[57825,57825,57825][0,0,0]

20

Wireshark decoding with colors

21

Wireshark coloring

osdp-python: https://github.com/ryanhz/osdp-python

OSDP.Net: https://github.com/bytedreamer/OSDP.Net

libosdp: https://github.com/goToMain/libosdp

libosdp-conformance: https://github.com/Security-Industry-Association/libosdp-

conformance

• Has a sniffer which may be useful

Libosdp is (royalty) free – expect to see this as the base for some systems

22

Free/open/available osdp tooling

https://github.com/Security-Industry-Association/libosdp-conformance
https://github.com/Security-Industry-Association/libosdp-conformance

Libosdp & friends are ok if you are building things, less awesome for breaking things

Speak OSDP manually to be freed of the libosdp constraints

Implement the crc and/or cksum fields and some protocol practicalities such as sizers

23

Very basic OSDP comms framework

def makesum(input):

 if type(input) is str:

 input = binascii.unhexlify(input)

 data = bytearray(input)

 sum = 0xff # pull-high included in frame checksum calculation

 for i in range(len(data)):

 sum = sum + int(data[i])

 lsb = (sum).to_bytes(4, byteorder="big")[3] # get lsb from sum

 cksum = pack("h",~lsb)[0] # 2's complement

 return cksum

24

OSDP checksum

def crc16_ccitt(crc, data):

 msb = crc >> 8

 lsb = crc & 255

 for c in data:

 x = c ^ msb

 x ^= (x >> 4)

 msb = (lsb ^ (x >> 3) ^ (x << 4)) & 255

 lsb = (x ^ (x << 5)) & 255

 return (msb << 8) + lsb

def makecrc(input):

 crc = crc16_ccitt(0x1D0F,input)

 return crc

25

OSDP CRC

OSDP issues

OSDP is multidrop and can handle ~127 devices on a single wire

This means there’s very real potential for sending messages on the bus from

somewhere along this potentially very long, up to 1km cable

• No longer just securing a single door, have to secure a long bus network

27

Cable run problems

OSDP with secure channel still has plaintext metadata in the message passing, only

(some) payload bodies are encrypted

Even when using secure channel, unencrypted messages are potentially still accepted

• Implementation & configuration specific

OSDP V2 without secure channel is Wiegand 2.0 with tamper detect baked in

Exactly the same problems in terms of sniffing and replaying, no matter what SIA

says in their marketing material

.. But more, new and complicated problems – firmware upgrades, reader messages

28

OSDP V2 problems

OSDP 2.1.5:

SCBK = Enc(cUID || (~cUID), MK) // cUID is first 8 bytes of PDID response

To establish a secure connection between a CP and a PD, the PD presents its cUID in

plain text. The CP performs the key diversification on the cUID and computes the PD's

SCBK, thus establishing the common key for the secure session.

Creating key material by concatenating a shared secret and some public info is as

good as deriving it from a shared secret

The shared secret has to be stored somewhere, in this case outside the building

29

OSDP V2 master key scheme
(use now discouraged)

The panel/ACU or reader/PD can invalidate an established session

 ACU by starting a new SC handshake

 PD by sending a NAK

NAK’s are 1-byte messages and a 4 byte MAC

Send a fake NAK to reset the channel to be able to capture initialization messages?

Not required; sending out of order data with a wrong mac or seqno may reset comms

Can also just choke the channel by spamming random data and waiting for an

automated reset; may generate events, or sever the wire briefly; same outcome but

different events

30

OSDP attack: Reset the secure channel

Protocol uses a 4-byte MAC to prevent message spoofing, payload bitflips etc.

This should be MAC-then-decrypt

Possibility of implementations ignoring the MAC entirely (crc for integrity) and just

decrypting & acting on payload, only checking 1 byte of the MAC, and so on and so on

A 4-byte MAC might seem small, in the context of a 9600-bps link it might be “ok”

31

OSDP V2 attack: MAC implementation fails

The control panel establishes session keys inside a tunnel, maybe encrypted with SCBK-D

If SCBK-D is indeed in use, it is trivial to connect / place yourself on the bus and handle the

connections for both sides, maybe with a single comms drop

Outcome: MITM capability; back to Wiegand / plain text security level

32

OSDP V2 attack: Man in the middle with SCBK-D

A reader/PD in provisioning-time state has the default SCBK provided in the standard

In this state the ACU CAN set a new SCBK

When the new SCBK is set the pd SHOULD exit install mode

• Impossible to check without tampering a little with the system

• Must observe and decode entire communication flow from fresh boot

Sending an osdp_PDCAP message may reveal if the peripheral uses the SCBK-D

Described in IEC 60839-11-5:2020 Annex B:

This field is encoded to represent the key exchange capabilities 0x01 – (Bit-0) default AES128 key”

33

OSDP V2 pitfall: Install-mode & SCBK-D infoleak

Messages must fit inside the poll timing or risk triggering device offline alerts

(poll timing * 2 -> 400ms)

The bus runs at 9600bps by default; you have ~200ms to get a response in, including

protocol overhead for simple messages

~(960 / 5)-~6 == room for ~186 chars

~(speed / timeslots because of OSDP poll timing) minus protocol overhead

• If you nail the timing exactly; if there is only 1 device on the bus

Constraints obviously apply to trigger as well as payloads

You are injecting onto an active bus!

Your payload might get clobbered by live responses

• Take over the connection entirely and prevent the device from sending responses for more

accuracy

•

34

OSDP attacker challenges

PD/READER attacks & auditing

35

Key storage & vandalism/theft procedures

Shared keys between bike shed and vault?

Fallback modes for tokens

Lack of tamper-proof screws (lol)

Evaluation of tamper detection

• Is it easy to bypass?

• Does it work / is it connected and generate high priority alerts; does security staff react?

• Are your readers monitored via a camera, but not recording PIN codes? Who watches

those videos?

Huge blind spot in terms of introspection capabilities for “regular auditors”

Readers drowned in potting compound, using obscure chips

No easy way of auditing readers, just have to trust the vendor

36

Attacking & auditing readers

37

OSDP dangerous messages to peripherals

The standard supports some fixed length messages which are hard to get wrong from a technical perspective, but there’s

several messages which require thought and actual parsing; the ones that stand out as dangerous to me:

CMND Desc Danger

0x6b osdp_TEXT Panel display control Has length field for text string

0x74 osdp_BIOMATCH Scan&match biometric template Complex data, length fields

0x80 osdp_MFG Manufacturer-specific Who knows what’s hidden here?

0xa4 osdp_GENAUTH General authenticate 2 different sizers & 1 offset included

0xa5 osdp_CRAUTH Challenge response auth ^^ same

0x7c osdp_FILETRANSFER Fw update, conf changes etc. Data “should” be sent in order;

reassembly complex, content parsing,

fw signatures?

s_initialize("osdp_text")

s_byte(0x6b,name="CMND",fuzzable=False)

s_byte(0x00,name="reader_no")

s_byte(0x01,name="text_command", fuzz_values=[0x02,0x03,0x04]) # perm or temp, wrap or no wrap

s_byte(0x01,name="display_time") # in seconds

s_byte(0x01,name="row") # which row to show first char

s_byte(0x01,name="col") # which column to show first char

s_size(block_name="text_string",length=1,fuzzable=True)

if s_block_start(name="text_string"):

 s_string("AAAABBBBCCCCDDDD")

 s_block_end(name="text_string")

38

PD attack: Basic fuzzer for display data

Reconfiguring will affect availability

IF the reader accepts plain text commands over OSDP,

OSDP_comset a wrong baudrate or similar

 -> reader drops out

 -> installer checks and maybe just replaces

 -> you have put in your device and capture the OSDP_keyset from the panel

 -> victory

39

PD/reader attack: Reconfigs (over OSDP)

Managed using smartphone app or config cards

Supports everything under the sun in terms of fobs

OSDP key management & functionality less… flexible

Install mode -> default 30313233… key

Secure mode -> “only secure channel”

No way of manually deploying a key during install

 (potentially via special “configuration cards”)

Must likely exchange keys protected by default key

40

PD attack: Other interfaces

Please check and disable all these things

41

SIGNO 20 sidestep

ACU/PANEL attacks & auditing

42

Find reader wiring documentation!

Example for HID SIGNO: hook your logic analyzer to the green & white wires

Wiegand is easily recognizable and decodes with pulseview:

Clock & data will have constant pulses on 1, blips on other

OSDP + OSDP with SC is a matter of guessing baud rates on RS485 and inspecting

the traffic as earlier described

43

Auditing reader <-> ACU comms

The ACU/panel is now a multi-homed device with a leg on the internal side, and a cable

dangling out the building on the danger side

Implementation-wise, the “first inside hop” / device is rs-485 all the way home, or has

an IP side and OSDP side

It may be possible to register yourself as a full-blown PD to expand the attack

surface

44

Auditing ACU’s: OSDP attacks

The PD/reader is actually less interesting as a target, compared to the ACU/panel.

Majority sent as poll responses - dangerous replies the panel must handle include:

45

OSDP dangerous responses to panels

CMND Desc Danger

0x50 osdp_RAW Card data report Length field

0x51 osdp_FMT Card data report Counter field

0x57 osdp_BIOREADR Biometric read response Length field, complex data

0x80 osdp_PIVDATAR PIV data response Multipart messaging, length fields

0x81 osdp_GENAUTHR General auth response Multipart messaging, length fields

0x82 osdp_CRAUTHR Challenge response Multipart messaging, length fields

0x83 0x84 0x90 osdp_MFG* Manufacturer-specific

… & more

s_initialize("osdp_raw")

s_byte(0x50,name="CMND",fuzzable=False)

s_byte(0x00,name="reader_no")

s_byte(0x00,name="format_code") # 0 or 1 according to spec

s_size(block_name="card_data",length=2,endian=‘<‘,fuzzable=True)

if s_block_start(name="card_data"):

 s_string("AAAA") # normally just a number

 s_block_end(name="card_data")

46

ACU attack: Basic fuzzer for card data parsing

Selected as test ACU for price & eBay availability, OSDP functionality without e.g.

setting up Lenel OnGuard or other enterprise management solution

Investigation shows a MIPS CPU, Linux

OSDP handled by pacsiod, libpacsiod.so and libosdp.so

47

ACU flaws: AXIS A1001 panel

CVE-2023-21405 / CVSS 6.5

First public actual OSDP implementation vuln, wahey

Send an osdp_RAW packet of length 0 or 0xffff -> array indexing error leading to crash

Very fragile parser, many other problems leading to hangs & crashes

while true;do echo -ne "\xff\x53\x80"`dd if=/dev/urandom bs=1 count=16` >/dev/ttyUSB0; sleep 0.15;done

Upside; this works even with secure channel enabled / enforced

48

AXIS A1001

CMND rdr no fmt code BitC LSB BitC MSB data result

0x50 00 00 (or 01) 00 00 <nothing> Crash

0x50 00 00 (or 01) ff ff <nothing> Crash

Panel goes into sweep pattern if reader is disconnected

NO options for configuring secure channel in the end-user facing UI

NO key configuration options in regular UI

Can do it via convoluted API

Tamper alerts hidden somewhere weird and need to be configured first

but that’s an OSDP tamper switch message, not me pulling wires.

Wire tampering / reader disconnect hidden under IdPoint -> Device;

alert not very useful

NO detection of bus collisions; can just spam events

Not strictly OSDP conformant, does not pull line high which breaks libosdp sniffing

49

AXIS A1001 review remarks

[WARNING] pacsiod[704]: 11:57:57.686636 (0x7ced00) OSDP NAK (EC=0x04) from reader at address 0x00 (state = 3).

[WARNING] pacsiod[704]: 11:57:57.689309 (0x7ced00) Unexpected sequence number, resetting to zero.

[WARNING] pacsiod[4850]: 14:56:42.062167 (0x75c08400) Incorrect SQN in response message.

[WARNING] pacsiod[704]: 11:59:35.765349 (0x7ced80) osdp_dev_int_message_timeout

[WARNING] pacsiod[704]: 11:59:52.348904 (0x7ced00) OSDP NAK (EC=0x01) from reader at address 0x00 (state = 3).

[WARNING] pacsiod[704]: 11:59:52.349946 (0x7ced00) CRC16 error, switching to 8-bit checksum.

[WARNING] pacsiod[704]: 11:59:57.447183 (0x7ced80) OSDP message crc-16 error, got 0x5380, calculated 0x8BC6

50

AXIS A1001 OSDP failures from the log

Spamming random traffic on the bus causes the ACU to enter a failure state

Readers are silently offline, doors are closed (or open)

Fragile parser; possible to lock up ACU MCU with malformed OSDP traffic

- locked up to such an extent that the tamper switch loses function

51

ACU flaws: <xxxx redacted>

Cheapest OSDP panel you can find. OSDP towards reader, Wiegand towards your legacy panel

Can work either as an access control unit or as a peripheral

Product - OSM-1000 - Cypress Integration Solutions / https://www.adiglobaldistribution.us/Product/ZE-

OSM1000 (datasheets)

52

ACU flaws: Cypress OSM-1000-BRD

0123456789:;<=>?

https://cypressintegration.com/products/osdp/osm-1000/
https://www.adiglobaldistribution.us/Product/ZE-OSM1000
https://www.adiglobaldistribution.us/Product/ZE-OSM1000

Timing issue; destroy secure channel, send unencrypted card read messages

- Passes as bueno to Wiegand side because SC does not exist yet

Documentation lacking; connect and cross your fingers

Device is too stupid, no way of detecting attacks except tamper

• This goes both ways; introspection is a lot of work

• Some crazy microcontroller on it I have no experience with

53

ACU flaws: Cypress OSM-1000-BRD (panel/ACU mode)

Conclusions & summary

54

OSDP -> OSDP v2 -> OSDP v2 with SC with master key -> OSDP v2 with SC with default SCBK (2020)

Creating standards people must pay to access is old hat and mainly assists failures (see SSCP)

OSDP over IP in the works, and a TLS version proposed

The future

55

OSDP & PACS status and future

https://en.sp-ac.org/standard-sscp

The attacker view is no longer confined to generic sniffing & replay of Wiegand or

cloning of insecure tokens

The attack surface is moving closer to the enterprise and away from targeting end

users or their tokens

56

Why was this interesting?

Safe sideDanger

Thank you!

	Overview
	Slide 1: OSDP & PACS
	Slide 2: Overview for this time slot
	Slide 3: Physical Access Control System component overview
	Slide 4: Current PACS status = dumpster fire
	Slide 5: Wiegand
	Slide 6: Modern PACS attack areas
	Slide 7: Times are changing (slowly)
	Slide 8: Wiegand vs. OSDP V1 vs. V2

	OSDP overview
	Slide 9: OSDP history + overview
	Slide 10: OSDP verification
	Slide 11: OSDP terminology
	Slide 12: OSDP V2 feature: smart card communication
	Slide 13: OSDP V2 feature: biometric reader support
	Slide 14: OSDP V2 with secure channel briefly explained
	Slide 15: OSDP V2 communication flow
	Slide 16: OSDP message format (header with CTRL & SCB)
	Slide 17: OSDP message capture (SC DISABLED)
	Slide 18: OSDP message capture (SC ENABLED)
	Slide 19: OSDP sniffing & decoding
	Slide 20: Wireshark decoding with colors
	Slide 21: Wireshark coloring
	Slide 22: Free/open/available osdp tooling
	Slide 23: Very basic OSDP comms framework
	Slide 24: OSDP checksum
	Slide 25: OSDP CRC

	OSDP protocol issues
	Slide 26: OSDP issues
	Slide 27: Cable run problems
	Slide 28: OSDP V2 problems
	Slide 29: OSDP V2 master key scheme (use now discouraged)
	Slide 30: OSDP attack: Reset the secure channel
	Slide 31: OSDP V2 attack: MAC implementation fails
	Slide 32: OSDP V2 attack: Man in the middle with SCBK-D
	Slide 33: OSDP V2 pitfall: Install-mode & SCBK-D infoleak
	Slide 34: OSDP attacker challenges

	PD/Reader attacks
	Slide 35: PD/READER attacks & auditing
	Slide 36: Attacking & auditing readers
	Slide 37: OSDP dangerous messages to peripherals
	Slide 38: PD attack: Basic fuzzer for display data
	Slide 39: PD/reader attack: Reconfigs (over OSDP)
	Slide 40: PD attack: Other interfaces
	Slide 41: SIGNO 20 sidestep

	ACU/Panel attacks
	Slide 42: ACU/PANEL attacks & auditing
	Slide 43: Auditing reader <-> ACU comms
	Slide 44: Auditing ACU’s: OSDP attacks
	Slide 45: OSDP dangerous responses to panels
	Slide 46: ACU attack: Basic fuzzer for card data parsing
	Slide 47: ACU flaws: AXIS A1001 panel
	Slide 48: AXIS A1001
	Slide 49: AXIS A1001 review remarks
	Slide 50: AXIS A1001 OSDP failures from the log
	Slide 51: ACU flaws: <xxxx redacted>
	Slide 52: ACU flaws: Cypress OSM-1000-BRD
	Slide 53: ACU flaws: Cypress OSM-1000-BRD (panel/ACU mode)

	Conclusions and summary
	Slide 54: Conclusions & summary
	Slide 55: OSDP & PACS status and future
	Slide 56: Why was this interesting?
	Slide 57: Thank you!

