
Forensic Flows,
but make them
better
Jessica Wilson, Brucon 2024

whoami
● Security engineer focused on DFIR
● A nerd
● A corgi and cat mom

What’s the problem?
● Too few people to be subject matter experts in forensics

What’s the problem?
● Too few people to be subject matter experts in forensics
● Too many tools that require training

What’s the problem?
● Too few people to be subject matter experts in forensics
● Too many tools that require training
● Not enough automation causing inconsistent investigations

Mission statement
We want all investigators to be empowered to
answer any question that arises from an alert
within our pipeline with ease. If we simplify
forensics, it can be incorporated into everyday
investigations

Needs
1. Capacity to grab artifacts on the fly

Needs
1. Capacity to grab artifacts on the fly

2. Ability to process and display evidence

Needs
1. Capacity to grab artifacts on the fly

2. Ability to process and display evidence
3. Scalable environment that runs independently of the

investigator

Needs
1. Capacity to grab artifacts on the fly

2. Ability to process and display evidence
3. Scalable environment that runs independently of the

investigator
4. Source controlled workflows

Needs
1. Capacity to grab artifacts on the fly

2. Ability to process and display evidence
3. Scalable environment that runs independently of the

investigator
4. Source controlled workflows
5. Easy integrations

1. Capacity to grab artifacts
on the fly

Define your artifacts
● What do you need to collect?
● Where does that artifact come from?
● If you could have anything, what would it be?

GRR Rapid Response
● Scalable open source live forensics platform
● Supports macOS, Windows, Linux, Kubernetes
● Easy to use API Python client
● Maintained by Google
● Good community support

Velociraptor
● Open Source live forensics platform
● Written in Golang
● API through GRPC
● Powered by Rapid7

EDR Vendors
Many EDR vendors offer a collection aspect from their product
● Crowdstrike Real Time Response
● Carbon Black Live Response
● SentinelOne Full Remote Shell

LibCloudForensics
● Open Source library to interact with cloud resources
● Written in Python
● Maintained by Google
● Supports Azure, AWS, and GCP
● Wrapper around API calls to cloud vendors

Any tool that can access your data
where it lives

2. Ability to process and
display evidence

Turbinia
● Open Source framework for distributed forensic workflows
● Runs

○ Plaso/Log2timeline
○ Docker Explorer
○ Container Explorer
○ Yara
○ BinaryExtractor
○ BulkExtractor
○ And many more

● Written in Python
● Full API server
● Maintained by Google, and good community support

● Open source framework for automatic creation of timelines
● Written in Python
● Maintained by Google
● Can parse logs such as:

○ Windows Event Logs
○ Browser History
○ FSEvents
○ Cups logs
○ NFTS logs
○ And so many more

Log2Timeline/Plaso

Timesketch
● Open source collaborative timeline investigation tool
● Automatically analyze events to highlight critical items
● Written in Python
● Python API client
● Maintained by Google
● Good community support

Cuckoov3 Sandbox
● Open source dynamic malware analysis system
● Primarily Python
● Can detonate a multitude of files

Capev2 Sandbox
● A sandbox is used to execute malicious files in an isolated

environment whilst instrumenting their dynamic behaviour
and collecting forensic artefacts.

● Derived from Cuckoo v1
● Written in Python
● Primarily for Windows files

AssemblyLine 4
● A scalable file triage and malware analysis system

integrating the cyber security community's best tools
● Open source project maintained by Cyber Center Canada
● Written in Python
● Supports a lot of different file types for Windows, Linux, and

a bit of macOS

You are limited by your
imagination

Okay cool.. But how do these
combine together?

3. Scalable environment that
runs independently of the

investigator

Microservices for the win
● Kubernetes is a great
● Scale your workers per task
● Deployment with Helm
● Source control

How to run tasks?
● Schedulable
● Scalable
● Easy to interact with
● Solutions:

○ GCP Cloud Tasks
○ Self hosted Celery
○ AWS EventBridge

How to scale from the tasks?
● Cloud task queue through HTTP requests

○ Solve with an API server
● Self contained worker

○ Solve with a Kubernetes Job
● Workloads should scale independently

How to manage state?
● Modular tasks
● State tracking for curious minds
● Auditing is important
● Schemas will change
● NoSQL databases make it easy

○ GCP Cloud Firestore
○ AWS DynamoDB
○ Local MongoDB or another NoSQL db

4. Source controlled workflows

● Consistent environments
● Peer reviewed through pull requests
● CI/CD
● Can use:

○ Terraform
○ CloudFormation
○ OpenTofu
○ Pulumi
○ Whatever you are comfortable with

Deploy as infrastructure as code

● Readable deployment charts
● Peer reviewed
● CI/CD
● Can use:

○ Helm
○ Kustomize
○ Carvel
○ Whatever you are comfortable with

Kubernetes deployments as code

● Single source of truth
● PRs for changes
● Learn more about forensics
● Starting point for deeper investigations

Workflows as code

5. Easy integrations

Within your forensic flow system
● Modularize everything
● Normalize field names
● Abstract out methods

Automation
● Normalize your alert data
● API to make requests simple
● Queries per second
● Artifacts can be ephemeral, grab them quickly!

Manual Investigations
● Single pane of glass to use
● One tool to train new investigators on

Now onto the practical portion
of the talk

Case study 1: Phishing

Phishing Scenario
● An employee reports receiving a phishing email
● They clicked the email link
● They downloaded and executed the app installer from the

link

What next?

Phishing - Old methodology
Understand where that email came from
● Ask the employee and wait for a response
● Check the logs for your email server
● Find the link from the email
● Run that link in a sandbox to understand

Grab the malware
● How do you pull it from the machine?
● Is the machine online?
● Does the file still exist on the machine?

Analyze the malware
● Grab the OSINT for the hash
● Run the malware through a sandbox
● Run static analysis on the malware

Phishing - Old methodology

Analyze the machine’s behavior
● Pull EDR logs and comb through them
● Pull event logs from the host

Phishing - Old methodology

Have 1 button to:
● Submit all links from an email to a sandbox
● Pull a file from a host when available, then route that file to

a sandbox
● Pull relevant logs and put them into Timesketch

Phishing - New methodology

Case Study 2: Compromised
Employee Account

Compromised account scenario
You received an alert for weird behavior from an account. The
alert is designed to detect account compromise

What next?

Determining what the account did
● What IP addresses did this account come from? Are any

atypical?
● Was there activity outside of normal working hours?
● Where do all your logs live for this?
● What queries do you need to craft to answer this?

Compromised Account - Old methodology

Determine if and where the credentials were used
● How many systems could the potential attacker have

touched?
● Were other accounts affected?
● Legitimate activity vs threat actor activity?

Compromised Account - Old methodology

● When the alert is generated
○ All logs are pulled automatically
○ Put into a Timesketch
○ Posted onto the ticket

● Run premade timesketch analyzers
○ Run sigma rules
○ Enrich and tag events

Compromised Account - New methodology

Case Study 3: Compromised
Kubernetes Node

Compromised K8s Node Scenario
You receive an alert from your Cloud Provider that one of your
kubernetes nodes was reaching out to a suspicious domain

What next?

Compromised K8s - Old Methodology
Grab the logs
● Can you get network logs?
● Can you get the process logs?

Grab the disk
● Permissions to access the disk?
● Does it still exist?
● Can your team perform dead box forensics to triage?

Compromised K8s - New Methodology
When the alert fires
● Pull relevant time logs for

○ Network
○ Process
○ Container Deployment

● Create a disk image
● Process the disk image with Turbinia to pull out triage

artifacts

Case Study 4: Vulnerability
Management

Vuln Management Scenario
You have an ask from your vulnerability management team to
understand if any Cloud Virtual Machine contains a specific
vulnerability.

What next?

Vuln Management - Old Methodology

● Pay a company a lot of money to do the scanning for you
● Figure out if it’s possible to ssh into every box and scan it

Vuln Management - New Methodology

● Use your forensic capabilities to image disks
● Automate mounting those disks to a premade scanner of

your choosing
● Output the results of the scan to your logging system
● Alert on those logs
● Enjoy the benefits of all the historical data from your

scanner for your incident response purposes

Lessons Learned

Determine notification paths
early

Give clear error messages to
investigators

Have metrics, and have them
early

Audit trails are best trails

Integration Testing saves
headaches

A forensic system is not a
replacement for trained

investigators

Thank you

Contact me:
Linkedin: https://www.linkedin.com/in/jawilson0502/
Email: me@jessicawilson.us

https://www.linkedin.com/in/jawilson0502/

Any questions?

