
Uncovering Hidden Threats:
Intro to Kernel Debugging with WinDbg

lexcentric
plant1330@gmail.com

Goal of the workshop

• To introduce the basics of kernel debugging with WinDbg, exploring kernel
memory management, process structures, and demonstrating how to
identify and exploit vulnerabilities using real-world examples.

Agenda

• Introduction to WinDbg

• WinDbg Interface Basics
o Key commands and GUI overview

• Understanding Processes
o Processes, threads, tokens, and

memory

• Kernel Basics
o Explanation of the kernel, its role,

and transition from user mode to
kernel mode.

• WinDbg Practice
o Viewing SSDT
o Viewing process list

• Real-world Exploit Example
o rtcore64.sys exploitation and

PatchGuard issue

• Final Demo
o Simplified exploit development

What is WinDbg?

What is WinDbg?

• Windows debugger, used by Microsoft itself for user space and kernel debugging.

What is WinDbg?

• Windows debugger, used by Microsoft itself for user space and kernel debugging.

• WinDbg from Debugging Tools (part of WinSDK)

What is WinDbg?

• Windows debugger, used by Microsoft itself for user space and kernel debugging.

• WinDbg from Debugging Tools (part of WinSDK)

• WinDbg Preview from Microsoft Store (better UI and more features)

GUI? Kind of…

Enter your commands here...

GUI? Kind of…

Get your results here ☺

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

• Set breakpoint bp

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

• Set breakpoint bp
• Show stack trace k

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

• Set breakpoint bp
• Show stack trace k
• Unassemble u

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

• Set breakpoint bp
• Show stack trace k
• Unassemble u
• Display memory d_

GUI? Kind of…

No Panic!

We will need only five base
commands ☺

• Set breakpoint bp
• Show stack trace k
• Unassemble u
• Display memory d_
• Arithmetic operations ?

What is a process?

Executable image

Process

Handle
Table

TokenThread 1

…

Thread 2

A Windows process is an instance of a program
with its own memory space, which contains its
code, data, stack, heap, and other necessary
resources for execution.

What is a process?

Executable image

Process

Handle
Table

TokenThread 1

…

Thread 2

An executable image is a file containing initial code,
data, and other resources, usually in .exe or .dll
format, that can be loaded into memory for execution
by the operating system.

e.g., notepad.exe

What is a process?

Executable image

Process

Handle
Table

TokenThread 1

…

Thread 2

A thread is a single sequence of instructions within a
process that can run independently, allowing
multitasking within the process.

…

FILE *file;

int number;

file = fopen("input.txt", "r");

fscanf(file, "%d", &number);

printf("%d\n", number);

…

What is a process?

Executable image

Process

Handle
Table

TokenThread 1

…

Thread 2

A process token contains information like the
user’s SID (Security Identifier), group SIDs,
privileges, and access rights. It defines the
security context of the process, determining what
resources it can access.

What is a process?

Executable image

Process

Handle
Table

TokenThread 1

…

Thread 2

A handle table stores references to system
resources (e.g., files, threads, registry keys) for a
process, managing access to them.

+--------+------------------------+

| Handle | Resource Type |

+--------+------------------------+

| 0x4 | File: "example.txt" |

| 0x8 | Thread ID: 1234 |

| 0xC | Mutex: "MyMutex" |

| 0x10 | Registry Key: HKCU\... |

| 0x14 | Socket: 192.168.1.1:80 |

+--------+------------------------+

Process memory… like this?

…

int a = 34;

char str = „Hello“;

…

Process

Physical address
space

RAM

Value 34 at physical
address 0x7B000?

“Hello” string at physical
address 0x3EDDDA?

Address space end

Address space start

Virtual Memory

…

int a = 34;

char str = „Hello“;

…

Process

Physical address
space

RAM

Value 34 is at virtual
address 0x7B000

“Hello” string at virtual
address 0x3EDDDA

MMU

Translates virtual addresses to
physical addresses

Virtual address space start

Virtual address space end

* MMU – Memory Management Unit

Virtual Memory (user mode)

…

int a = 34;

char str = „Hello“;

…

Process

Physical address
space

RAM

Value 34 is at virtual
address 0x7B000

“Hello” string at virtual
address 0x3EDDDA

MMU

Translates virtual addresses to
physical addresses

0x00007FFF'FFFFFFFF

0x00000000'00000000

* The usage insights of physical address ranges can be obtained using the RAMMap tool from the Sysinternals Suite.

Virtual Memory (user mode)

…

int a = 34;

char str = „Hello“;

…

Process

Physical address
space

RAM

Read value at virtual address
0xFFFF7EEE'FFFFFFFF

Raise Access Violation
Exception (Segmentation Fault)

MMU

Detects the invalid memory access since
the address does not belong to the
process's accessible address space

0x00007FFF'FFFFFFFF

0x00000000'00000000

Virtual Memory (multiple processes)

notepad.exe

Physical address
space

vscode.exe

…

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

Value at x7B000?

RAM

* in the diagram the MMU module is omitted, but it is implied

Physical address
space

Value at x7B000?

Value at x7B000?

Virtual addresses can map to different physical
addresses across processes…

Virtual Memory (multiple processes)

notepad.exe

Physical address
space

vscode.exe

…

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

Value at x00E55?

RAM

* in the diagram the MMU module is omitted, but it is implied

Physical address
space

Value at xA0FFF?

Value at xFF650?

kernel32.dll

… while different virtual addresses can also map to
the same physical address for shared resources like
system DLLs

Then, what is the kernel?

Executable image

System Process (PID 4)

Handle
Table

TokenThread 1

…

Thread 2

The kernel is the core of the operating system that
manages memory, hardware through drivers,
process scheduling, access management, and
provides essential services to applications.

e.g., hal.dll, disk.sys, etc.

kernel objects

ntoskrnl.exe

Drivers

Then, what is the kernel?

notepad.exe

Physical address
space

vscode.exe

System

MMU

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

0xFFFF0800'00000000

0xFFFFFFFF'FFFFFFFF

Address
translation

* The image for the kernel in the "System" process (PID 4) is primarily C:\Windows\System32\ntoskrnl.exe

RAM

Then, what is the kernel?

notepad.exe

Physical address
space

vscode.exe

System

MMU

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

0xFFFF0800'00000000

0xFFFFFFFF'FFFFFFFF

Address
translation

Can access entire memory space + hardware

RAM

Transition to kernel mode

notepad.exe

System (PID 4) ?

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

System (PID 4)

WinAPI (kernel32.dll)

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

System (PID 4)

WinAPI (kernel32.dll)

Native API (ntdll.dll)

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

System (PID 4)

WinAPI (kernel32.dll)

Native API (ntdll.dll)
the last layer in user
space before transitioning
to kernel mode

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

mov EAX, 0x55

syscall

System (PID 4)

WinAPI (kernel32.dll)

Native API (ntdll.dll)
the last layer in user
space before transitioning
to kernel mode

Jump to kernel

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

mov EAX, 0x55

syscall

Performs checks and

executes the requested

operation

System (PID 4)

WinAPI (kernel32.dll)

Native API (ntdll.dll)
the last layer in user
space before transitioning
to kernel mode

Jump to kernel

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

mov EAX, 0x55

syscall

Returns a handle to

file.txt if the operation

succeeds

System (PID 4)

WinAPI (kernel32.dll)

Native API (ntdll.dll)
the last layer in user
space before transitioning
to kernel mode

Jump to kernel

Transition to kernel mode

CreateFileW(file.txt,…)

notepad.exe

NtCreateFile(file.txt,…)

mov EAX, 0x55

syscall

Returns a handle to

file.txt if the operation

succeeds

System (PID 4)

Received a handle for file.txt!

WinDbg practice: Attach to process

• Launch notepad.exe
• Launch WinDbg Preview

1. File
2. Start debugging
3. Attach to process
4. Select process
5. Attach

1

2

3

4

5

WinDbg practice: Set a breakpoint

1

2

• Notepad pauses when WinDbg
attaches

1. Set a breakpoint
2. Continue execution

WinDbg practice: Hit a breakpoint

1

• Open a file or create a new tab in
notepad

1. Breakpoint is hit!
2. [Disassemble instructions

at the current address to
show the assembly code of
CreateFileW]

• CreateFileW doesn't directly
interact with the kernel, so we
set a new breakpoint at ntdll's
NtCreateFile

[2]

WinDbg practice: Get syscall number

1

1. Sets a breakpoint at the
NtCreateFile function in
ntdll.dll

2. Continue execution
3. Breakpoint at NtCreateFile is

hit!
4. Disassemble instructions at the

current address to show the
assembly code of NtCreateFile

5. Get syscall number: look for the
mov eax, 55h instruction, which
loads the syscall number (0x55)
into the EAX register

6. The syscall instruction triggers
the transition to kernel mode

3
4

5

6

2

WinDbg practice: Step over

1

2

1. The "Step Over" action
proceeds to the next instruction
without entering functions

2. After stepping over, the debugger
shows the next instruction to be
executed: mov eax, 55h. This
sets the syscall number (0x55) in
the EAX register, which the
kernel uses to identify the
NtCreateFile request

WinDbg practice: Step into

2

2

1. "Step Over" until the syscall
instruction

2. When the syscall is about to
execute, try to "Step Into" to
attempt to observe what
happens inside the kernel

3. The kernel code cannot be
stepped into in user-mode
debugging; "Step Into" behaves
like "Step Over" in WinDbg
because it does not transition
into kernel-mode code during
user-mode debugging

3

System Calls: User to Kernel Mode

notepad.exe

vscode.exe

System

0x00000000'00000000

0x00007FFF'FFFFFFFF

0x00000000'00000000

0x00007FFF'FFFFFFFF

0xFFFFFFFF'FFFFFFFF

N
tC

re
at

eF
ile

 s
ys

ca
ll

• System calls act as "gateways" from
user mode to kernel mode, enabling
applications to request services from
the operating system

• Synchronous vs. Asynchronous:
Regular syscalls wait for completion,
while various options allow non-
blocking behavior

• Syscall Reference Guide:
https://j00ru.vexillium.org/syscalls/nt/
64/

N
tA

cc
es

sC
he

ck
 s

ys
ca

ll

0xFFFF0800'00000000

N
tC

re
at

eF
ile

 s
ys

ca
ll

w
ith

FI
LE

_F
LA

G
_O

VE
RL

AP
PE

D

Makes syscall non-blocking

https://j00ru.vexillium.org/syscalls/nt/64/
https://j00ru.vexillium.org/syscalls/nt/64/

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

Remote kernel debugging

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

Remote kernel debugging (over network, USB, 1394, and serial connections)

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

 View kernel objects (reliable with restrictions)

Remote kernel debugging (over network, USB, 1394, and serial connections)

 View kernel objects

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

 View kernel objects (reliable with restrictions)
 Cannot use breakpoints

Remote kernel debugging (over network, USB, 1394, and serial connections)

 View kernel objects
 Set breakpoints

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

 View kernel objects (reliable with restrictions)
 Cannot use breakpoints
 Only one host is needed

Remote kernel debugging (over network, USB, 1394, and serial connections)

 View kernel objects
 Set breakpoints
 Requires two hosts

Intro to kernel debugging

WinDbg can operate in either user mode or kernel mode, but not in both simultaneously.

Local kernel debugging

 View kernel objects (reliable with restrictions)
 Cannot use breakpoints
 Only one host is needed

Remote kernel debugging (over network, USB, 1394, and serial connections)

 View kernel objects
 Set breakpoints
 Requires two hosts

Let’s try this for now

WinDbg practice: VM preparations

If using own Windows 11 VM:

• Disable secure boot in VM settings
VMWare: Settings → Options → Advanced → UEFI → Uncheck “Enable secure boot”

• Start VM, run cmd.exe as an Administrator and enable debugging by entering:
bcdedit /set debug on
You should get “The operation completed successfully.”

• Install WinDbg Preview from Microsoft Store

• Enjoy!

Alternatively download preconfigured VM from https://tinyurl.com/axkc9txy

WinDbg practice: Attach to kernel

WinDbg practice: View SSDT

WinDbg practice: View Process List

Real-world example

Client.exe

CustomDriver.sys

…

CustomDriver.sys

Ntfs.sys

Legit read/write
in kernel buffer

We possessed a low-privileged
user account

Stores sensitive data in
kernel space (secure)

Real-world example

Real-world example

The RTCore64.sys driver is part of the MSI Afterburner and RivaTuner software packages.
This driver provides low-level hardware access for monitoring and overclocking features
on a Windows system, specifically for graphics cards.

Real-world example

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Legit read/write
in kernel buffer

Real-world example

Client.exe

CustomDriver.sys

Legit read/write
in kernel buffer

…

RTCore64.sys

Ntfs.sys

CVE-2019-16098

CVE-2019-16098

Real-world example

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Supply any address in the range
0xFFFF0800'00000000 -
0xFFFFFFFF'FFFFFFFF for
read/write... and it works

Legit read/write
in kernel buffer

Real-world example

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Legit read/write
in kernel buffer

DeviceIoControl()

Supply any address in the range
0xFFFF0800'00000000 -
0xFFFFFFFF'FFFFFFFF for
read/write... and it works

First idea

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Rewrite the token of current
process with the token of
System process for privilege
escalation

Legit read/write
in kernel buffer

DeviceIoControl()

It is possible to get the pointer
to System process out of user
space, more information here:

Exploring the Windows kernel
using vulnerable driver - Part 2 -
Ring 0x00 (idafchev.github.io)

https://idafchev.github.io/blog/Vulnerable_Driver_Part2/#3-token-stealing-in-practice
https://idafchev.github.io/blog/Vulnerable_Driver_Part2/#3-token-stealing-in-practice
https://idafchev.github.io/blog/Vulnerable_Driver_Part2/#3-token-stealing-in-practice

PatchGuard

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Rewrite the token of current
process with the token of
System process for privilege
escalation

Legit read/write
in kernel buffer

DeviceIoControl()

PatchGuard prevents unauthorized
kernel modifications, including changes
to the SSDT, IDT, GDT, and process token
structures, in 64-bit Windows systems.

Hmm...

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Need to do something without
triggering PatchGuard… Legit read/write

in kernel buffer

DeviceIoControl()

Hmm...???

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Legit read/write
in kernel buffer

DeviceIoControl()

Remember this guy here?

Need to do something without
triggering PatchGuard…

Hmm...???

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Legit read/write
in kernel buffer

DeviceIoControl()

Need to do something without
triggering PatchGuard…

Apparently data was stored
in .data section of the
CustomeDriver.sys module

PatchGuard

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Read memory space of
CustomDriver.sys, thus
extracting sensitive data Legit read/write

in kernel buffer

DeviceIoControl()

PatchGuard

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Read memory space of
CustomDriver.sys, thus
extracting sensitive data Legit read/write

in kernel buffer

DeviceIoControl()

Sensitive data got
leaked via vulnerability
in the third-party driver

PatchGuard

Client.exe

CustomDriver.sys

…

RTCore64.sys

Ntfs.sys

Read memory space of
CustomDriver.sys, thus
extracting sensitive data Legit read/write

in kernel buffer

DeviceIoControl()

Sensitive data got
leaked via vulnerability
in the third-party driver

Full code of the exploit is
available here:
ExploitRTCore64

https://github.com/lexcentric/VulnDrivers/tree/main/ExploitRTCore64

Final demo

Developing simplified exploit on reading System process’s token

Summary

• In this session, we covered the fundamentals of kernel debugging with
WinDbg, explored the Windows process and memory model, and dived into
real-world kernel exploitation scenarios.

• By understanding the internal workings of the kernel and utilizing tools like
WinDbg, we can effectively identify and explore potential security
vulnerabilities.

• Remember, responsible handling of kernel-level access and knowledge of
protections like PatchGuard are crucial in maintaining system integrity.

	Slide 1: Uncovering Hidden Threats: Intro to Kernel Debugging with WinDbg
	Slide 2: Goal of the workshop
	Slide 3: Agenda
	Slide 4: What is WinDbg?
	Slide 5: What is WinDbg?
	Slide 6: What is WinDbg?
	Slide 7: What is WinDbg?
	Slide 8: GUI? Kind of…
	Slide 9: GUI? Kind of…
	Slide 10: GUI? Kind of…
	Slide 11: GUI? Kind of…
	Slide 12: GUI? Kind of…
	Slide 13: GUI? Kind of…
	Slide 14: GUI? Kind of…
	Slide 15: GUI? Kind of…
	Slide 16: What is a process?
	Slide 17: What is a process?
	Slide 18: What is a process?
	Slide 19: What is a process?
	Slide 20: What is a process?
	Slide 21: Process memory… like this?
	Slide 22: Virtual Memory
	Slide 23: Virtual Memory (user mode)
	Slide 24: Virtual Memory (user mode)
	Slide 25: Virtual Memory (multiple processes)
	Slide 26: Virtual Memory (multiple processes)
	Slide 27: Then, what is the kernel?
	Slide 28: Then, what is the kernel?
	Slide 29: Then, what is the kernel?
	Slide 30: Transition to kernel mode
	Slide 31: Transition to kernel mode
	Slide 32: Transition to kernel mode
	Slide 33: Transition to kernel mode
	Slide 34: Transition to kernel mode
	Slide 35: Transition to kernel mode
	Slide 36: Transition to kernel mode
	Slide 37: Transition to kernel mode
	Slide 38: WinDbg practice: Attach to process
	Slide 39: WinDbg practice: Set a breakpoint
	Slide 40: WinDbg practice: Hit a breakpoint
	Slide 41: WinDbg practice: Get syscall number
	Slide 42: WinDbg practice: Step over
	Slide 43: WinDbg practice: Step into
	Slide 44: System Calls: User to Kernel Mode
	Slide 45: Intro to kernel debugging
	Slide 46: Intro to kernel debugging
	Slide 47: Intro to kernel debugging
	Slide 48: Intro to kernel debugging
	Slide 49: Intro to kernel debugging
	Slide 50: Intro to kernel debugging
	Slide 51: Intro to kernel debugging
	Slide 52: WinDbg practice: VM preparations
	Slide 53: WinDbg practice: Attach to kernel
	Slide 54: WinDbg practice: View SSDT
	Slide 55: WinDbg practice: View Process List
	Slide 56: Real-world example
	Slide 57: Real-world example
	Slide 58: Real-world example
	Slide 59: Real-world example
	Slide 60: Real-world example
	Slide 61: CVE-2019-16098
	Slide 62: Real-world example
	Slide 63: Real-world example
	Slide 64: First idea
	Slide 65: PatchGuard
	Slide 66: Hmm...
	Slide 67: Hmm...???
	Slide 68: Hmm...???
	Slide 69: PatchGuard
	Slide 70: PatchGuard
	Slide 71: PatchGuard
	Slide 72: Final demo
	Slide 73: Summary

